IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v371y2020ics0096300319309427.html
   My bibliography  Save this article

Conservative super-convergent and hybrid discontinuous Galerkin methods applied to nonlinear Schrödinger equations

Author

Listed:
  • Castillo, Paul
  • Gómez, Sergio

Abstract

Using a unified framework, the formulation of a super-convergent discontinuous Galerkin (SDG) method and a hybridized discontinuous Galerkin (HDG) version, both applied to a general nonlinear Schrödinger equation is presented. Conservation of the mass and the energy is studied, theoretically for the semi-discrete formulation; and, for the fully discrete method using the Modified Crank–Nicolson time scheme. Conservation of both quantities is numerically validated on two dimensional problems and high order approximations. A numerical study of convergence illustrates the advantages of the new formulations over the traditional Local Discontinuous Galerkin (LDG) method. Numerical experiments show that the approximation of the initial discrete energy converges with order 2k+1, which is better than that obtained by the standard (continuous) finite element, which is only of order 2k when polynomials of degree k are used.

Suggested Citation

  • Castillo, Paul & Gómez, Sergio, 2020. "Conservative super-convergent and hybrid discontinuous Galerkin methods applied to nonlinear Schrödinger equations," Applied Mathematics and Computation, Elsevier, vol. 371(C).
  • Handle: RePEc:eee:apmaco:v:371:y:2020:i:c:s0096300319309427
    DOI: 10.1016/j.amc.2019.124950
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300319309427
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2019.124950?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:371:y:2020:i:c:s0096300319309427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.