IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v371y2020ics009630031930880x.html
   My bibliography  Save this article

Rainbow numbers for small graphs in planar graphs

Author

Listed:
  • Qin, Zhongmei
  • Lei, Hui
  • Li, Shasha

Abstract

Let G be a family of graphs and H be a subgraph of at least one of the graphs in G. The rainbow number for H with respect to G, denoted rb(G,H), is the minimum number k such that, if H⊆G∈G, then any k-edge-coloring of G contains a rainbow H (i.e., any two edges of H are colored distinct). Denote by Tn the class of all plane triangulations of order n and Wd the wheel graph of order d+1. In this paper, we determine the exact rainbow numbers for matchings and a triangle with one or two pendant edges with respect to Wd, and the exact rainbow numbers for the triangle with one pendant edge with respect to Tn. Furthermore, we give upper bounds of rainbow numbers for triangles with two pendant edges with respect to Tn.

Suggested Citation

  • Qin, Zhongmei & Lei, Hui & Li, Shasha, 2020. "Rainbow numbers for small graphs in planar graphs," Applied Mathematics and Computation, Elsevier, vol. 371(C).
  • Handle: RePEc:eee:apmaco:v:371:y:2020:i:c:s009630031930880x
    DOI: 10.1016/j.amc.2019.124888
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S009630031930880X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2019.124888?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jin, Zemin & Wang, Fang & Wang, Huaping & Lv, Bihong, 2020. "Rainbow triangles in edge-colored Kneser graphs," Applied Mathematics and Computation, Elsevier, vol. 365(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qin, Zhongmei & Li, Shasha & Lan, Yongxin & Yue, Jun, 2021. "Rainbow numbers for paths in planar graphs," Applied Mathematics and Computation, Elsevier, vol. 397(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bedo, Marcos & Leite, João V.S. & Oliveira, Rodolfo A. & Protti, Fábio, 2023. "Geodetic convexity and kneser graphs," Applied Mathematics and Computation, Elsevier, vol. 449(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:371:y:2020:i:c:s009630031930880x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.