IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v369y2020ics0096300319306873.html
   My bibliography  Save this article

On block triangular preconditioned iteration methods for solving the Helmholtz equation

Author

Listed:
  • Lang, Chao
  • Gao, Rong
  • Qiu, Chujun

Abstract

To further improve the efficiency of solving the Helmholtz equation in heterogeneous media with large wavenumber, the Krylov subspace methods incorporated with a class of inexact rotated block triangular preconditioners are presented to solve a block two-by-two linear system derived from the discrete Helmholtz equation. We further develop the eigenvalue properties of the preconditioned matrices to discuss the convergence of the corresponding preconditioned iteration methods. The superiority of such preconditioned iteration methods is prominent according to the numerical results when comparing with other classical iteration methods. We also investigate how the wavenumber influences the performance of the corresponding methods and it is shown that the iteration number of our proposed methods linearly increase with the wavenumber, roughly. Furthermore, the computational wave-fields which conform the real physical law are exhibited to show the correctness of our proposed numerical modeling algorithm.

Suggested Citation

  • Lang, Chao & Gao, Rong & Qiu, Chujun, 2020. "On block triangular preconditioned iteration methods for solving the Helmholtz equation," Applied Mathematics and Computation, Elsevier, vol. 369(C).
  • Handle: RePEc:eee:apmaco:v:369:y:2020:i:c:s0096300319306873
    DOI: 10.1016/j.amc.2019.124695
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300319306873
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2019.124695?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:369:y:2020:i:c:s0096300319306873. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.