IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v366y2020ics0096300319307556.html
   My bibliography  Save this article

A new family of non-stationary hermite subdivision schemes reproducing exponential polynomials

Author

Listed:
  • Jeong, Byeongseon
  • Yoon, Jungho

Abstract

In this study, we present a new class of quasi-interpolatory non-stationary Hermite subdivision schemes reproducing exponential polynomials. This class extends and unifies the well-known Hermite schemes, including the interpolatory schemes. Each scheme in this family has tension parameters which provide design flexibility, while obtaining at least the same or better smoothness compared to an interpolatory scheme of the same order. We investigate the convergence and smoothness of the new schemes by exploiting the factorization tools of non-stationary subdivision operators. Moreover, a rigorous analysis for the approximation order of the non-stationary Hermite scheme is presented. Finally, some numerical results are presented to demonstrate the performance of the proposed schemes. We find that the quasi-interpolatory scheme can circumvent the undesirable artifacts appearing in interpolatory schemes with irregularly distributed control points.

Suggested Citation

  • Jeong, Byeongseon & Yoon, Jungho, 2020. "A new family of non-stationary hermite subdivision schemes reproducing exponential polynomials," Applied Mathematics and Computation, Elsevier, vol. 366(C).
  • Handle: RePEc:eee:apmaco:v:366:y:2020:i:c:s0096300319307556
    DOI: 10.1016/j.amc.2019.124763
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300319307556
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2019.124763?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baoxing Zhang & Hongchan Zheng, 2021. "A Variant Cubic Exponential B-Spline Scheme with Shape Control," Mathematics, MDPI, vol. 9(23), pages 1-11, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:366:y:2020:i:c:s0096300319307556. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.