IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v361y2019icp42-46.html
   My bibliography  Save this article

Resistances between two nodes of a path network

Author

Listed:
  • Jiang, Zhuozhuo
  • Yan, Weigen

Abstract

Considerable progress has recently been made in the development of techniques to exactly determine two-point resistances in networks of various topologies. Given n positive integers m1,m2,…,mn, let P[mi]1n be the network with node set V=V1∪V2∪…∪Vn, where Vi∩Vj=∅ if i ≠ j and |Vi|=mi, and with edge set E={uv|u∈Vi,v∈Vi+1,i=1,2,…,n−1}. In this paper, using triangle-star transformation and the principle of substitution, we express arbitrary two nodes resistances of a path network in terms of the number of their nodes.

Suggested Citation

  • Jiang, Zhuozhuo & Yan, Weigen, 2019. "Resistances between two nodes of a path network," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 42-46.
  • Handle: RePEc:eee:apmaco:v:361:y:2019:i:c:p:42-46
    DOI: 10.1016/j.amc.2019.05.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300319303935
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2019.05.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Zhuozhuo & Yan, Weigen, 2017. "Resistance between two nodes of a ring network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 21-26.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sardar, Muhammad Shoaib & Pan, Xiang-Feng & Xu, Shou-Jun, 2024. "Computation of the resistance distance and the Kirchhoff index for the two types of claw-free cubic graphs," Applied Mathematics and Computation, Elsevier, vol. 473(C).
    2. Sajjad, Wasim & Sardar, Muhammad Shoaib & Pan, Xiang-Feng, 2024. "Computation of resistance distance and Kirchhoff index of chain of triangular bipyramid hexahedron," Applied Mathematics and Computation, Elsevier, vol. 461(C).
    3. Sardar, Muhammad Shoaib & Pan, Xiang-Feng & Xu, Si-Ao, 2020. "Computation of resistance distance and Kirchhoff index of the two classes of silicate networks," Applied Mathematics and Computation, Elsevier, vol. 381(C).
    4. Fan, Jiaqi & Zhu, Jiali & Tian, Li & Wang, Qin, 2020. "Resistance Distance in Potting Networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    5. Yang, Yujun & Cao, Yuliang & Yao, Haiyuan & Li, Jing, 2018. "Solution to a conjecture on a Nordhaus–Gaddum type result for the Kirchhoff index," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 241-249.
    6. Huang, Sumin & Li, Shuchao, 2020. "On the resistance distance and Kirchhoff index of a linear hexagonal (cylinder) chain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:361:y:2019:i:c:p:42-46. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.