IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v356y2019icp438-448.html
   My bibliography  Save this article

Graphs with a given diameter that maximise the Wiener index

Author

Listed:
  • Sun, Qiang
  • Ikica, Barbara
  • Škrekovski, Riste
  • Vukašinović, Vida

Abstract

The Wiener index of a graph is one of the most recognised and very well-researched topological indices, i.e. graph theoretic invariants of molecular graphs. Nonetheless, some interesting questions remain largely unsolved despite being easy to state and comprehend. In this paper, we investigate a long-standing question raised by Plesník in 1984, namely, which graphs with a given diameter d attain the maximum value with respect to the Wiener index. Our approach to the problem is twofold – first we investigate the graphs with diameter smaller than or equal to 4, and then restrict our attention to graphs with diameter equal to n−c for c ≥ 1. Specifically, we provide a complete characterisation of sought-after graphs for 1 ≤ c ≤ 4 and solve the general case for c small enough in comparison to n. Along the way, we state some conjectures and propose an extension to our work.

Suggested Citation

  • Sun, Qiang & Ikica, Barbara & Škrekovski, Riste & Vukašinović, Vida, 2019. "Graphs with a given diameter that maximise the Wiener index," Applied Mathematics and Computation, Elsevier, vol. 356(C), pages 438-448.
  • Handle: RePEc:eee:apmaco:v:356:y:2019:i:c:p:438-448
    DOI: 10.1016/j.amc.2019.03.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300319302267
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2019.03.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Das, Kinkar Ch. & Gutman, Ivan & Nadjafi–Arani, Mohammad J., 2015. "Relations between distance–based and degree–based topological indices," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 142-147.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Guangfu & Liu, Yajing, 2020. "The edge-Wiener index of zigzag nanotubes," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    2. Yu Yang & Long Li & Wenhu Wang & Hua Wang, 2020. "On BC-Subtrees in Multi-Fan and Multi-Wheel Graphs," Mathematics, MDPI, vol. 9(1), pages 1-29, December.
    3. Al-Yakoob, Salem & Stevanović, Dragan, 2020. "On transmission irregular starlike trees," Applied Mathematics and Computation, Elsevier, vol. 380(C).
    4. Wenjie Ning & Kun Wang, 2021. "On the Estrada Indices of Unicyclic Graphs with Fixed Diameters," Mathematics, MDPI, vol. 9(19), pages 1-11, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hua, Hongbo & Das, Kinkar Ch., 2016. "On the Wiener polarity index of graphs," Applied Mathematics and Computation, Elsevier, vol. 280(C), pages 162-167.
    2. Kinkar Ch. Das & M. J. Nadjafi-Arani, 2017. "On maximum Wiener index of trees and graphs with given radius," Journal of Combinatorial Optimization, Springer, vol. 34(2), pages 574-587, August.
    3. Wenjie Ning & Yuheng Song & Kun Wang, 2022. "More on Sombor Index of Graphs," Mathematics, MDPI, vol. 10(3), pages 1-12, January.
    4. Das, Kinkar Ch., 2016. "On the Graovac–Ghorbani index of graphs," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 353-360.
    5. Gutman, Ivan, 2016. "On Steiner degree distance of trees," Applied Mathematics and Computation, Elsevier, vol. 283(C), pages 163-167.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:356:y:2019:i:c:p:438-448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.