IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v355y2019icp458-481.html
   My bibliography  Save this article

Water wave scattering by multiple thin vertical barriers

Author

Listed:
  • Roy, R.
  • De, Soumen
  • Mandal, B.N.

Abstract

A study of obliquely incident water wave scattering by two, three and four unequal partially immersed vertical barriers in water of uniform finite depth has been carried out in this paper employing Havelock’s expansion of water wave potential. A formulation involving integral equations in terms of either horizontal component of velocities across the gap below each barrier or difference of potentials across each barrier are obtained using the Havelock’s inversion formulae. A multi-term Galerkin approximation technique with Chebychev’s polynomials (multiplied by appropriate weights) as basis functions is adapted to solve these integral equations and to compute the reflection and transmission coefficients numerically. The numerical results are depicted graphically against the wavenumber in several figures for various arrangements of the vertical barriers. From these figures zeros of reflection coefficient are observed when the vertical barriers are immersed upto equal depths below the mean free surface. However, this observation is not true always for non-identical vertical barriers. For two non-identical partially immersed barriers reflection coefficient never vanishes whereas for three non-identical partially immersed barriers reflection coefficient vanishes at discrete frequencies if the two outer barriers have equal lengths of submergence. For four partially immersed barriers arranged symmetrically about a vertical line, zeros of reflection coefficient are always observed. The known results of a single barrier are recovered as special cases so as to establish the correctness of the present method.

Suggested Citation

  • Roy, R. & De, Soumen & Mandal, B.N., 2019. "Water wave scattering by multiple thin vertical barriers," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 458-481.
  • Handle: RePEc:eee:apmaco:v:355:y:2019:i:c:p:458-481
    DOI: 10.1016/j.amc.2019.03.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300319301973
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2019.03.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:355:y:2019:i:c:p:458-481. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.