IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v355y2019icp325-342.html
   My bibliography  Save this article

Face recognition via Deep Stacked Denoising Sparse Autoencoders (DSDSA)

Author

Listed:
  • Görgel, Pelin
  • Simsek, Ahmet

Abstract

Face recognition is still a hot topic under investigation due to many challenges of variation including the difference in poses, illumination, expression, occlusion and scenes. Recently, deep learning methods achieved remarkable results in image representation and recognition fields. Such methods extract salient features automatically from images to reduce the dimension and obtain more useful representation of raw data. In this paper, the proposed face recognition system namely Deep Stacked Denoising Sparse Autoencoders (DSDSA) combines the deep neural network technology, sparse autoencoders and denoising task. Autoencoder is used to construct a neural network that learns an approximation of an identity function by placing constraints to learn fine representations of the inputs. Autoencoders have unique capabilities in dealing with interpretation of the input data; in this way produce more meaningful results. They are successfully applied to many object recognition fields. For the classification task, two classifiers were used, namely multi-class SVM and Softmax classifier. Experimental results on known face databases including ORL, Yale, Caltech and a subset of PubFig show that the proposed system yields promising performance and achieves comparable accuracy.

Suggested Citation

  • Görgel, Pelin & Simsek, Ahmet, 2019. "Face recognition via Deep Stacked Denoising Sparse Autoencoders (DSDSA)," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 325-342.
  • Handle: RePEc:eee:apmaco:v:355:y:2019:i:c:p:325-342
    DOI: 10.1016/j.amc.2019.02.071
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S009630031930181X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2019.02.071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Junxiong & Feng, Xiong & Jiang, Lin & Zhu, Qiao, 2021. "State of charge estimation of lithium-ion battery using denoising autoencoder and gated recurrent unit recurrent neural network," Energy, Elsevier, vol. 227(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:355:y:2019:i:c:p:325-342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.