IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v354y2019icp103-114.html
   My bibliography  Save this article

An ADI difference scheme based on fractional trapezoidal rule for fractional integro-differential equation with a weakly singular kernel

Author

Listed:
  • Qiao, Leijie
  • Xu, Da
  • Wang, Zhibo

Abstract

In this paper, we propose a fast and efficient numerical method to solve the two-dimensional integro-differential equation with a weakly singular kernel. The numerical method are considered by finite difference approach for spatial discretization and alternating direction implicit (ADI) method in time, combined with the second-order fractional quadrature convolution rule introduced by Lubich and the classical L1 approximation for Caputo fractional derivative. The detailed analysis shows that the proposed scheme is unconditionally stable and convergent with the convergence order O(τmin{1+α,2−α}+h12+h22). Some numerical results are also given to confirm our theoretical prediction.

Suggested Citation

  • Qiao, Leijie & Xu, Da & Wang, Zhibo, 2019. "An ADI difference scheme based on fractional trapezoidal rule for fractional integro-differential equation with a weakly singular kernel," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 103-114.
  • Handle: RePEc:eee:apmaco:v:354:y:2019:i:c:p:103-114
    DOI: 10.1016/j.amc.2019.02.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300319301201
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2019.02.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Da, 2017. "Numerical asymptotic stability for the integro-differential equations with the multi-term kernels," Applied Mathematics and Computation, Elsevier, vol. 309(C), pages 107-132.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fang, Xing & Qiao, Leijie & Zhang, Fengyang & Sun, Fuming, 2023. "Explore deep network for a class of fractional partial differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    2. Qiao, Leijie & Xu, Da & Tang, Bo & Zhou, Jun, 2022. "Fast ADI difference/compact difference schemes for the nonlocal evolution equation with weakly singular kernels in three dimensions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 329-347.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang, Xing & Qiao, Leijie & Zhang, Fengyang & Sun, Fuming, 2023. "Explore deep network for a class of fractional partial differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    2. Qiu, Wenlin & Xu, Da & Guo, Jing, 2021. "Numerical solution of the fourth-order partial integro-differential equation with multi-term kernels by the Sinc-collocation method based on the double exponential transformation," Applied Mathematics and Computation, Elsevier, vol. 392(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:354:y:2019:i:c:p:103-114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.