IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v352y2019icp146-156.html
   My bibliography  Save this article

An efficient SPDE approach for El Niño

Author

Listed:
  • Mena, H.
  • Pfurtscheller, L.

Abstract

We consider the numerical approximation of stochastic partial differential equations (SPDEs) based models for a quasi-periodic climate pattern in the tropical Pacific Ocean known as El Niño phenomenon. We show that for these models the mean and the covariance are given by a deterministic partial differential equation and by an operator differential equation, respectively. In this context, we provide a numerical framework to approximate these parameters directly. We compare this method to stochastic differential equations and SPDEs based models from the literature solved by Taylor methods and stochastic Galerkin methods, respectively. Numerical results for different scenarios taking as a reference measured data of the years 2014 and 2015 (last Niño event) validate the efficiency of our approach.

Suggested Citation

  • Mena, H. & Pfurtscheller, L., 2019. "An efficient SPDE approach for El Niño," Applied Mathematics and Computation, Elsevier, vol. 352(C), pages 146-156.
  • Handle: RePEc:eee:apmaco:v:352:y:2019:i:c:p:146-156
    DOI: 10.1016/j.amc.2019.01.071
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300319300888
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2019.01.071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patrick Bossert, 2024. "Parameter estimation for second-order SPDEs in multiple space dimensions," Statistical Inference for Stochastic Processes, Springer, vol. 27(3), pages 485-583, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:352:y:2019:i:c:p:146-156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.