IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v350y2019icp331-347.html
   My bibliography  Save this article

Fractional spectral collocation method for optimal control problem governed by space fractional diffusion equation

Author

Listed:
  • Li, Shengyue
  • Zhou, Zhaojie

Abstract

In this paper, we mainly investigate the fractional spectral collocation discretization of optimal control problem governed by a space-fractional diffusion equation. Existence and uniqueness of the solution to optimal control problem is proved. The continuous first order optimality condition is derived. The eigenfunctions of two classes of fractional Strum–Liouville problems are used as basis functions to approximate state variable and adjoint state variable, respectively. The fractional spectral collocation scheme for the control problem is constructed based on ‘first optimize, then discretize’ approach. Note that the solutions of fractional differential equations are usually singular near the boundary, a generalized fractional spectral collocation scheme for the control problem is proposed based on ‘first optimize, then discretize’ approach. A projected gradient algorithm is designed based on the discrete optimality condition. Numerical experiments are carried out to verify the effectiveness of the proposed numerical schemes and algorithm.

Suggested Citation

  • Li, Shengyue & Zhou, Zhaojie, 2019. "Fractional spectral collocation method for optimal control problem governed by space fractional diffusion equation," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 331-347.
  • Handle: RePEc:eee:apmaco:v:350:y:2019:i:c:p:331-347
    DOI: 10.1016/j.amc.2019.01.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300319300268
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2019.01.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taohua Liu & Xiucao Yin & Yinghao Chen & Muzhou Hou, 2023. "A Second-Order Accurate Numerical Approximation for a Two-Sided Space-Fractional Diffusion Equation," Mathematics, MDPI, vol. 11(8), pages 1-15, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:350:y:2019:i:c:p:331-347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.