IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v348y2019icp456-464.html
   My bibliography  Save this article

The characteristic polynomial of a generalized join graph

Author

Listed:
  • Chen, Yu
  • Chen, Haiyan

Abstract

For a graph G with adjacency matrix A(G) and degree-diagonal matrix D(G), Cvetković et al introduced a bivariate polynomial ϕG(x,t)=det(xI−(A(G)−tD(G))), where I is the identity matrix. The polynomial ϕG(x, t) not only generalizes the characteristic polynomials of some well-known matrices related to G, such as the adjacency, the Laplacian matrices, but also has an elegant combinatorial interpretation as being equivalent to the Bartholdi zeta function. Let G=H[G1,G2,…,Gk] be the generalized join graph of G1,G2,…,Gk determined by graph H. In this paper, we first give a decomposition formula for ϕG(x, t). The decomposition formula provides us a new method to construct infinitely many pairs of non-regular ϕ-cospectral graphs. Then, as applications, explicit expressions for ϕG(x, t) of some special kinds of graphs are given.

Suggested Citation

  • Chen, Yu & Chen, Haiyan, 2019. "The characteristic polynomial of a generalized join graph," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 456-464.
  • Handle: RePEc:eee:apmaco:v:348:y:2019:i:c:p:456-464
    DOI: 10.1016/j.amc.2018.12.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318310543
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.12.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:348:y:2019:i:c:p:456-464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.