IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v347y2019icp645-652.html
   My bibliography  Save this article

The generalized connectivity of the line graph and the total graph for the complete bipartite graph

Author

Listed:
  • Li, Yinkui
  • Gu, Ruijuan
  • Lei, Hui

Abstract

The generalized k-connectivity κk(G) of a graph G, introduced by Hager (1985), is a natural generalization of the concept of connectivity κ(G), which is just for k=2. This parameter is often used to measure the capability of a network G to connect any k vertices in G. The line graph and the total graph are usually seen as important models for interconnection networks. In this paper, we determine the generalized 3-(edge-)connectivity of the line graph and the total graphs of the complete bipartite graph and discuss the bound for generalized 3-connectivity of the total graphs.

Suggested Citation

  • Li, Yinkui & Gu, Ruijuan & Lei, Hui, 2019. "The generalized connectivity of the line graph and the total graph for the complete bipartite graph," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 645-652.
  • Handle: RePEc:eee:apmaco:v:347:y:2019:i:c:p:645-652
    DOI: 10.1016/j.amc.2018.11.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318310129
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.11.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Shu-Li & Hao, Rong-Xia & Wei, Chao, 2022. "Internally disjoint trees in the line graph and total graph of the complete bipartite graph," Applied Mathematics and Computation, Elsevier, vol. 422(C).
    2. Zhu, Wen-Han & Hao, Rong-Xia & Feng, Yan-Quan & Lee, Jaeun, 2023. "The 3-path-connectivity of the k-ary n-cube," Applied Mathematics and Computation, Elsevier, vol. 436(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:347:y:2019:i:c:p:645-652. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.