IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v347y2019icp306-318.html
   My bibliography  Save this article

Numerical schemes for ordinary delay differential equations with random noise

Author

Listed:
  • Asai, Y.
  • Kloeden, P.E.

Abstract

Random ordinary differential equations (RODEs) are ordinary differential equations (ODEs) which have a stochastic process in their vector field functions. They have been used in a wide range of applications such as biology, medicine and engineering and play an important role in the theory of random dynamical systems. RODEs can be investigated pathwise as deterministic ODEs, however, the classical numerical methods for ODEs do not attain original order of convergence because the stochastic process has at most Hölder continuous sample paths and the resulting vector is also at most Hölder continuous in time. Recently, Jenzen & Kloeden derived new class of numerical methods for RODEs using integral versions of implicit Taylor-like expansions and developed arbitrary higher order schemes for RODEs. Their idea can be applied to random ordinary delay differential equations (RODDEs) by implementing Taylor-like expansions in the corresponding delay term. In this paper, numerical methods for RODDEs are systematically constructed based on Taylor-like expansions and they are applied to virus dynamics model with random fluctuations and time delay.

Suggested Citation

  • Asai, Y. & Kloeden, P.E., 2019. "Numerical schemes for ordinary delay differential equations with random noise," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 306-318.
  • Handle: RePEc:eee:apmaco:v:347:y:2019:i:c:p:306-318
    DOI: 10.1016/j.amc.2018.11.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318310075
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.11.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abraham J. Arenas & Gilberto González-Parra & Jhon J. Naranjo & Myladis Cogollo & Nicolás De La Espriella, 2021. "Mathematical Analysis and Numerical Solution of a Model of HIV with a Discrete Time Delay," Mathematics, MDPI, vol. 9(3), pages 1-21, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:347:y:2019:i:c:p:306-318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.