IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v346y2019icp622-632.html
   My bibliography  Save this article

Time dependent solutions for fractional coupled Schrödinger equations

Author

Listed:
  • Lenzi, E.K.
  • de Castro, A.S.M.
  • Mendes, R.S.

Abstract

We analyze dynamical properties of two fractional Schrödinger equations coupled by some classes of real time independent potentials. For this set of equations, we investigate the required conditions on the equations making it possible to retain the probabilistic interpretation of their correspondent solutions when two component wave functions are considered. We observe the presence of interference between the components during the transition processes which can be either reversible or irreversible depending on the condition imposed on the potentials. The solutions for these equations are obtained in both cases of localized and non-localized coupling potentials.

Suggested Citation

  • Lenzi, E.K. & de Castro, A.S.M. & Mendes, R.S., 2019. "Time dependent solutions for fractional coupled Schrödinger equations," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 622-632.
  • Handle: RePEc:eee:apmaco:v:346:y:2019:i:c:p:622-632
    DOI: 10.1016/j.amc.2018.10.074
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318309482
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.10.074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Diwaker, & Panda, Bandhan & Chakraborty, Aniruddha, 2016. "Exact solution of Schrodinger equation for two state problem with time dependent coupling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 380-387.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. dos Santos, Mateus C.P., 2024. "Orthogonal multi-peak solitons from the coupled fractional nonlinear Schrödinger equation," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:346:y:2019:i:c:p:622-632. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.