IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v346y2019icp594-611.html
   My bibliography  Save this article

Evaluations of nonlinear Euler sums of weight ten

Author

Listed:
  • Xu, Ce

Abstract

In this paper we present a new family of identities for Euler sums and integrals of polylogarithms by using the methods of generating function and integral representations of series. Then we apply it to obtain the closed forms of all quadratic Euler sums of weight ten. Furthermore, we also establish some relations between multiple zeta (star) values and nonlinear Euler sums. As applications of these relations, we give new closed form representations of several cubic Euler sums through single zeta values and linear sums. Finally, with the help of numerical computations of Mathematica or Maple, we evaluate several other Euler sums of weight ten.

Suggested Citation

  • Xu, Ce, 2019. "Evaluations of nonlinear Euler sums of weight ten," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 594-611.
  • Handle: RePEc:eee:apmaco:v:346:y:2019:i:c:p:594-611
    DOI: 10.1016/j.amc.2018.10.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318309081
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.10.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kwang-Wu Chen & Minking Eie & Yao Lin Ong, 2024. "Some Symmetry and Duality Theorems on Multiple Zeta(-Star) Values," Mathematics, MDPI, vol. 12(20), pages 1-13, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:346:y:2019:i:c:p:594-611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.