IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v343y2019icp183-194.html
   My bibliography  Save this article

Second-order consensus protocols based on transformed d-path Laplacians

Author

Listed:
  • Gambuzza, Lucia Valentina
  • Frasca, Mattia
  • Estrada, Ernesto

Abstract

The Laplacian of a graph mathematically formalizes the interactions occurring between nodes/agents connected by a link. Its extension to account for the indirect peer influence through longer paths, weighted as a function of their length, is represented by the notion of transformed d-path Laplacians. In this paper, we propose a second-order consensus protocol based on these matrices and derive criteria for the stability of the error dynamics, which also consider the presence of a communication delay. We show that the new consensus protocol is stable in a wider region of the control gains, but admits a smaller maximum delay than the protocol based on the classical Laplacian. We show numerical examples to illustrate our theoretical results.

Suggested Citation

  • Gambuzza, Lucia Valentina & Frasca, Mattia & Estrada, Ernesto, 2019. "Second-order consensus protocols based on transformed d-path Laplacians," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 183-194.
  • Handle: RePEc:eee:apmaco:v:343:y:2019:i:c:p:183-194
    DOI: 10.1016/j.amc.2018.09.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318308166
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.09.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yin, Xiangxin & Dai, Haifeng & Zhao, Lingzhi & Zhao, Donghua & Xiao, Rui & Sun, Yongzheng, 2024. "Control costs of long-range interacting multi-agent systems with noise perturbation," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:343:y:2019:i:c:p:183-194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.