IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v342y2019icp309-321.html
   My bibliography  Save this article

Fluid-structure interaction in turbulent flows; a CFD based aeroelastic algorithm using LES

Author

Listed:
  • Ilie, Marcel

Abstract

Strong (two-way) coupling of fluid and structure presents interest to vary engineering applications, particularly when the flow is turbulent and sensitive to the structure motions. In the present work a CFD based algorithm, using large-eddy simulation, is proposed for the numerical investigation of strong aeroelastic fluid-structure coupling. The present work concerns the highly turbulent flows. The Reynolds number effect on the aeroelastic response of vertical flat plate in cross-flow is subject of investigation. The results of the present work indicate that there is a strong coupling between fluid and structure, and thus the fluid and structure influence each other in a particular manner. Also the results show that the aeroelastic response of the structure depends on the flow Reynolds number. It was observed that the structure's deformations increase with the Reynolds number.

Suggested Citation

  • Ilie, Marcel, 2019. "Fluid-structure interaction in turbulent flows; a CFD based aeroelastic algorithm using LES," Applied Mathematics and Computation, Elsevier, vol. 342(C), pages 309-321.
  • Handle: RePEc:eee:apmaco:v:342:y:2019:i:c:p:309-321
    DOI: 10.1016/j.amc.2017.10.059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300317307683
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2017.10.059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xueqing Shi & Daniel (Jian) Sun & Ying Zhang & Jing Xiong & Zhonghua Zhao, 2020. "Modeling Emission Flow Pattern of a Single Cruising Vehicle on Urban Streets with CFD Simulation and Wind Tunnel Validation," IJERPH, MDPI, vol. 17(12), pages 1-17, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:342:y:2019:i:c:p:309-321. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.