IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v339y2018icp820-836.html
   My bibliography  Save this article

Numerical simulation of couple stress nanofluid flow in magneto-porous medium with thermal radiation and a chemical reaction

Author

Listed:
  • Sithole, Hloniphile
  • Mondal, Hiranmoy
  • Goqo, Sicelo
  • Sibanda, Precious
  • Motsa, Sandile

Abstract

We present a study of heat and mass transfer for a couple stress nanofluid flow in a magneto-porous medium with thermal radiation and heat generation. The flow is generated by a stretching surface and the temperature and concentration distributions are studied subject to nanoparticle Brownian motion and thermophoresis effects. The nonlinear model equations have been solved using a spectral quasi-linearization method. The solution method has been used in a limited number of studies in the resent past. Its general reliability for a wider range of problems remains to be determined. Thus in order to determine the accuracy of the solutions, and the convergence of the method, a qualitative presentation of residual errors for different parameters is given. Additionally, for some special flow cases, the current results have been compared with previously published work and found to be in good agreement. A limited parametric study showing the influence of the flow parameters on the fluid properties is given. The numerical analysis of the residual error of PDEs and convergence properties of the method are also discussed. The method is computationally fast and gives very accurate results after only a few iterations using very few grid points in the numerical discretization process. The aim of this manuscript is to pay more attention of residual error analysis with heat and fluid flow on couple stress nanofluids to improve the system performance. Also the fluid temperature in the boundary layer region rise significantly for increasing the values of thermophoresis and Brownian motion parameter. The results show that wall shear stress increases by increasing couple stress parameter.

Suggested Citation

  • Sithole, Hloniphile & Mondal, Hiranmoy & Goqo, Sicelo & Sibanda, Precious & Motsa, Sandile, 2018. "Numerical simulation of couple stress nanofluid flow in magneto-porous medium with thermal radiation and a chemical reaction," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 820-836.
  • Handle: RePEc:eee:apmaco:v:339:y:2018:i:c:p:820-836
    DOI: 10.1016/j.amc.2018.07.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318306076
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.07.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khairy Zaimi & Anuar Ishak & Ioan Pop, 2014. "Flow Past a Permeable Stretching/Shrinking Sheet in a Nanofluid Using Two-Phase Model," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-6, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali, Bagh & Khan, Shahid Ali & Hussein, Ahmed Kadhim & Thumma, Thirupathi & Hussain, Sajjad, 2022. "Hybrid nanofluids: Significance of gravity modulation, heat source/ sink, and magnetohydrodynamic on dynamics of micropolar fluid over an inclined surface via finite element simulation," Applied Mathematics and Computation, Elsevier, vol. 419(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siti Nur Alwani Salleh & Norfifah Bachok & Norihan Md Arifin & Fadzilah Md Ali & Ioan Pop, 2018. "Magnetohydrodynamics Flow Past a Moving Vertical Thin Needle in a Nanofluid with Stability Analysis," Energies, MDPI, vol. 11(12), pages 1-15, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:339:y:2018:i:c:p:820-836. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.