IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v339y2018icp546-555.html
   My bibliography  Save this article

On artificial neural networks approach with new cost functions

Author

Listed:
  • Jafarian, Ahmad
  • Measoomy Nia, Safa
  • Khalili Golmankhaneh, Alireza
  • Baleanu, Dumitru

Abstract

In this manuscript, the artificial neural networks approach involving generalized sigmoid function as a cost function, and three-layered feed-forward architecture is considered as an iterative scheme for solving linear fractional order ordinary differential equations. The supervised back-propagation type learning algorithm based on the gradient descent method, is able to approximate this a problem on a given arbitrary interval to any desired degree of accuracy. To be more precise, some test problems are also given with the comparison to the simulation and numerical results given by another usual method.

Suggested Citation

  • Jafarian, Ahmad & Measoomy Nia, Safa & Khalili Golmankhaneh, Alireza & Baleanu, Dumitru, 2018. "On artificial neural networks approach with new cost functions," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 546-555.
  • Handle: RePEc:eee:apmaco:v:339:y:2018:i:c:p:546-555
    DOI: 10.1016/j.amc.2018.07.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318306192
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.07.053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kostić, Srđan & Stojković, Milan & Prohaska, Stevan, 2016. "Hydrological flow rate estimation using artificial neural networks: Model development and potential applications," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 373-385.
    2. Pakdaman, M. & Ahmadian, A. & Effati, S. & Salahshour, S. & Baleanu, D., 2017. "Solving differential equations of fractional order using an optimization technique based on training artificial neural network," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 81-95.
    3. Zhu, Lei & Xu, Wei-wei, 2016. "The inverse eigenvalue problem of structured matrices from the design of Hopfield neural networks," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 1-7.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zafar, Muhammad Hamza & Mansoor, Majad & Abou Houran, Mohamad & Khan, Noman Mujeeb & Khan, Kamran & Raza Moosavi, Syed Kumayl & Sanfilippo, Filippo, 2023. "Hybrid deep learning model for efficient state of charge estimation of Li-ion batteries in electric vehicles," Energy, Elsevier, vol. 282(C).
    2. Biswas, Chetna & Singh, Anup & Chopra, Manish & Das, Subir, 2023. "Study of fractional-order reaction-advection-diffusion equation using neural network method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 15-27.
    3. Qu, Haidong & She, Zihang & Liu, Xuan, 2021. "Neural network method for solving fractional diffusion equations," Applied Mathematics and Computation, Elsevier, vol. 391(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dimitrios Kartsonakis Mademlis & Nikolaos Dritsakis, 2021. "Volatility Forecasting using Hybrid GARCH Neural Network Models: The Case of the Italian Stock Market," International Journal of Economics and Financial Issues, Econjournals, vol. 11(1), pages 49-60.
    2. Hou, Jie & Ma, Zhiying & Ying, Shihui & Li, Ying, 2024. "HNS: An efficient hermite neural solver for solving time-fractional partial differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    3. Biswas, Chetna & Singh, Anup & Chopra, Manish & Das, Subir, 2023. "Study of fractional-order reaction-advection-diffusion equation using neural network method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 15-27.
    4. Li, Qiaoping & Liu, Sanyang & Chen, Yonggang, 2018. "Combination event-triggered adaptive networked synchronization communication for nonlinear uncertain fractional-order chaotic systems," Applied Mathematics and Computation, Elsevier, vol. 333(C), pages 521-535.
    5. Thanon Korkiatsakul & Sanoe Koonprasert & Khomsan Neamprem, 2019. "New Analytical Solutions for Time-Fractional Kolmogorov-Petrovsky-Piskunov Equation with Variety of Initial Boundary Conditions," Mathematics, MDPI, vol. 7(9), pages 1-20, September.
    6. Navickas, Z. & Telksnys, T. & Marcinkevicius, R. & Ragulskis, M., 2017. "Operator-based approach for the construction of analytical soliton solutions to nonlinear fractional-order differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 625-634.
    7. Sabir, Zulqurnain & Raja, Muhammad Asif Zahoor & Khalique, Chaudry Masood & Unlu, Canan, 2021. "Neuro-evolution computing for nonlinear multi-singular system of third order Emden–Fowler equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 799-812.
    8. Muhammad Imran Asjad & Saif Ur Rehman & Ali Ahmadian & Soheil Salahshour & Mehdi Salimi, 2021. "First Solution of Fractional Bioconvection with Power Law Kernel for a Vertical Surface," Mathematics, MDPI, vol. 9(12), pages 1-18, June.
    9. Qu, Haidong & She, Zihang & Liu, Xuan, 2021. "Neural network method for solving fractional diffusion equations," Applied Mathematics and Computation, Elsevier, vol. 391(C).
    10. Admon, Mohd Rashid & Senu, Norazak & Ahmadian, Ali & Majid, Zanariah Abdul & Salahshour, Soheil, 2024. "A new modern scheme for solving fractal–fractional differential equations based on deep feedforward neural network with multiple hidden layer," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 218(C), pages 311-333.
    11. Agliari, Elena & Fachechi, Alberto & Luongo, Domenico, 2024. "A spectral approach to Hebbian-like neural networks," Applied Mathematics and Computation, Elsevier, vol. 474(C).
    12. Zarepour, Mazyar & Loghmani, Ghasem Barid, 2021. "Numerical solution of arbitrary-order linear partial differential equations using an optimal control technique," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 187(C), pages 77-96.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:339:y:2018:i:c:p:546-555. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.