IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v339y2018icp144-152.html
   My bibliography  Save this article

Local RBF-FD technique for solving the two-dimensional modified anomalous sub-diffusion equation

Author

Listed:
  • Pourbashash, Hossein
  • Khaksar-e Oshagh, Mahmood

Abstract

The main aim of this paper is to propose an efficient and suitable numerical procedure based on the local meshless collocation method for solving the two-dimensional modified anomalous sub-diffusion equation. The fractional derivative is based on the Riemann–Liouville fractional integral. Firstly, a finite difference scheme with O(τ) has been employed to discrete the time variable and also the local radial basis-finite difference (LRBF-FD) method is used to discrete the spatial direction. For the presented numerical technique, we prove the unconditional stability and also obtain an error bound. We employ a test problem to show the accuracy of the proposed technique. Also, we solve the mentioned model on irregular domain to show the efficincy of the developed technique.

Suggested Citation

  • Pourbashash, Hossein & Khaksar-e Oshagh, Mahmood, 2018. "Local RBF-FD technique for solving the two-dimensional modified anomalous sub-diffusion equation," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 144-152.
  • Handle: RePEc:eee:apmaco:v:339:y:2018:i:c:p:144-152
    DOI: 10.1016/j.amc.2018.06.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318305320
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.06.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:339:y:2018:i:c:p:144-152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.