IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v338y2018icp192-206.html
   My bibliography  Save this article

Regular non-hamiltonian polyhedral graphs

Author

Listed:
  • Van Cleemput, Nico
  • Zamfirescu, Carol T.

Abstract

Invoking Steinitz’ Theorem, in the following a polyhedron shall be a 3-connected planar graph. From around 1880 till 1946 Tait’s conjecture that cubic polyhedra are hamiltonian was thought to hold—its truth would have implied the Four Colour Theorem. However, Tutte gave a counterexample. We briefly survey the ensuing hunt for the smallest non-hamiltonian cubic polyhedron, the Lederberg-Bosák-Barnette graph, and prove that there exists a non-hamiltonian essentially 4-connected cubic polyhedron of order n if and only if n ≥ 42. This extends work of Aldred, Bau, Holton, and McKay. We then present our main results which revolve around the quartic case: combining a novel theoretical approach for determining non-hamiltonicity in (not necessarily planar) graphs of connectivity 3 with computational methods, we dramatically improve two bounds due to Zaks. In particular, we show that the smallest non-hamiltonian quartic polyhedron has at least 35 and at most 39 vertices, thereby almost reaching a quartic analogue of a famous result of Holton and McKay. As an application of our results, we obtain that the shortness coefficient of the family of all quartic polyhedra does not exceed 5/6. The paper ends with a discussion of the quintic case in which we tighten a result of Owens.

Suggested Citation

  • Van Cleemput, Nico & Zamfirescu, Carol T., 2018. "Regular non-hamiltonian polyhedral graphs," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 192-206.
  • Handle: RePEc:eee:apmaco:v:338:y:2018:i:c:p:192-206
    DOI: 10.1016/j.amc.2018.05.062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S009630031830479X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.05.062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Keshavarz-Kohjerdi, Fatemeh & Bagheri, Alireza, 2023. "Finding Hamiltonian cycles of truncated rectangular grid graphs in linear time," Applied Mathematics and Computation, Elsevier, vol. 436(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:338:y:2018:i:c:p:192-206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.