IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v328y2018icp189-202.html
   My bibliography  Save this article

Index reduction of differential algebraic equations by differential Dixon resultant

Author

Listed:
  • Qin, Xiaolin
  • Yang, Lu
  • Feng, Yong
  • Bachmann, Bernhard
  • Fritzson, Peter

Abstract

High index differential algebraic equations (DAEs) are ordinary differential equations (ODEs) with constraints and arise frequently from many mathematical models of physical phenomenons and engineering fields. In this paper, we generalize the idea of differential elimination with Dixon resultant to polynomially nonlinear DAEs. We propose a new algorithm for index reduction of DAEs and establish the notion of differential Dixon resultant, which can provide the differential resultant of the enlarged system of original equations. To make use of structure of DAEs, variable pencil technique is given to determine the termination of differentiation. Moreover, we also provide a heuristic method for removing the extraneous factors from differential resultant. The experimentation shows that the proposed algorithm outperforms existing ones for many examples taken from the literature.

Suggested Citation

  • Qin, Xiaolin & Yang, Lu & Feng, Yong & Bachmann, Bernhard & Fritzson, Peter, 2018. "Index reduction of differential algebraic equations by differential Dixon resultant," Applied Mathematics and Computation, Elsevier, vol. 328(C), pages 189-202.
  • Handle: RePEc:eee:apmaco:v:328:y:2018:i:c:p:189-202
    DOI: 10.1016/j.amc.2017.12.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300317308883
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2017.12.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qin, Xiaolin & Tang, Juan & Feng, Yong & Bachmann, Bernhard & Fritzson, Peter, 2016. "Efficient index reduction algorithm for large scale systems of differential algebraic equations," Applied Mathematics and Computation, Elsevier, vol. 277(C), pages 10-22.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juan Tang & Yongsheng Rao, 2020. "A New Block Structural Index Reduction Approach for Large-Scale Differential Algebraic Equations," Mathematics, MDPI, vol. 8(11), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan Tang & Yongsheng Rao, 2020. "A New Block Structural Index Reduction Approach for Large-Scale Differential Algebraic Equations," Mathematics, MDPI, vol. 8(11), pages 1-15, November.
    2. Marzorati, Denise & Fernández, Joaquin & Kofman, Ernesto, 2022. "Efficient connection processing in equation–based object–oriented models," Applied Mathematics and Computation, Elsevier, vol. 418(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:328:y:2018:i:c:p:189-202. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.