IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v327y2018icp35-45.html
   My bibliography  Save this article

Image regularization by nonnegatively constrained Conjugate Gradient

Author

Listed:
  • Favati, P.
  • Lotti, G.
  • Menchi, O.
  • Romani, F.

Abstract

In the image reconstruction context the nonnegativity of the computed solution is often required. Conjugate Gradient (CG), used as a reliable regularization tool, may give solutions with negative entries, particularly when large nearly zero plateaus are present. The active constraints set, detected by projection onto the nonnegative orthant, turns out to be largely incomplete leading to poor effects on the accuracy of the reconstructed image. In this paper an inner-outer method based on CG is proposed to compute nonnegative reconstructed images with a strategy which enlarges subsequently the active constraints set. This method appears to be especially suitable for the reconstruction of images having large nearly zero backgrounds. The numerical experimentation validates the effectiveness of the proposed method when compared to other strategies for nonnegative reconstruction.

Suggested Citation

  • Favati, P. & Lotti, G. & Menchi, O. & Romani, F., 2018. "Image regularization by nonnegatively constrained Conjugate Gradient," Applied Mathematics and Computation, Elsevier, vol. 327(C), pages 35-45.
  • Handle: RePEc:eee:apmaco:v:327:y:2018:i:c:p:35-45
    DOI: 10.1016/j.amc.2018.01.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318300249
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.01.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:327:y:2018:i:c:p:35-45. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.