IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v324y2018icp51-58.html
   My bibliography  Save this article

A higher-order convolution for Bernoulli polynomials of the second kind

Author

Listed:
  • He, Yuan
  • Kim, Taekyun

Abstract

In this paper, we perform a further investigation for the Bernoulli polynomials of the second kind. By making use of the generating function methods and summation transform techniques, we establish a higher-order convolution identity for the Bernoulli polynomials of the second kind. We also present some illustrative special cases as well as immediate consequences of the main result.

Suggested Citation

  • He, Yuan & Kim, Taekyun, 2018. "A higher-order convolution for Bernoulli polynomials of the second kind," Applied Mathematics and Computation, Elsevier, vol. 324(C), pages 51-58.
  • Handle: RePEc:eee:apmaco:v:324:y:2018:i:c:p:51-58
    DOI: 10.1016/j.amc.2017.12.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300317308731
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2017.12.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sung-Soo Pyo & Taekyun Kim & Seog-Hoon Rim, 2018. "Degenerate Daehee Numbers of the Third Kind," Mathematics, MDPI, vol. 6(11), pages 1-10, November.
    2. Yuan He & Serkan Araci & Hari M. Srivastava & Mahmoud Abdel-Aty, 2018. "Higher-Order Convolutions for Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi Polynomials," Mathematics, MDPI, vol. 6(12), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:324:y:2018:i:c:p:51-58. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.