IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v324y2018icp174-190.html
   My bibliography  Save this article

Reduced difference polynomials and self-intersection computations

Author

Listed:
  • Farouki, Rida T.

Abstract

A reduced difference polynomialf(u,v)=(p(u)−p(v))/(u−v) may be associated with any given univariate polynomial p(t), t ∈ [ 0, 1 ] such that the locus f(u,v)=0 identifies the pairs of distinct values u and v satisfying p(u)=p(v). The Bernstein coefficients of f(u, v) on [ 0, 1 ]2 can be determined from those of p(t) through a simple algorithm, and can be restricted to any subdomain of [ 0, 1 ]2 by standard subdivision methods. By constructing the reduced difference polynomials f(u, v) and g(u, v) associated with the coordinate components of a polynomial curve r(t)=(x(t),y(t)), a quadtree decomposition of [ 0, 1 ]2 guided by the variation-diminishing property yields a numerically stable scheme for isolating real solutions of the system f(u,v)=g(u,v)=0, which identify self-intersections of the curve r(t). Through the Kantorovich theorem for guaranteed convergence of Newton–Raphson iterations to a unique solution, the self-intersections can be efficiently computed to machine precision. By generalizing the reduced difference polynomial to encompass products of univariate polynomials, the method can be readily extended to compute the self-intersections of rational curves, and of the rational offsets to Pythagorean–hodograph curves.

Suggested Citation

  • Farouki, Rida T., 2018. "Reduced difference polynomials and self-intersection computations," Applied Mathematics and Computation, Elsevier, vol. 324(C), pages 174-190.
  • Handle: RePEc:eee:apmaco:v:324:y:2018:i:c:p:174-190
    DOI: 10.1016/j.amc.2017.12.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300317308755
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2017.12.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Javier Sánchez-Reyes, 2024. "Self-Intersections of Cubic Bézier Curves Revisited," Mathematics, MDPI, vol. 12(16), pages 1-7, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:324:y:2018:i:c:p:174-190. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.