IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v322y2018icp123-128.html
   My bibliography  Save this article

Analytical solution of the flow of a Newtonian fluid with pressure-dependent viscosity in a rectangular duct

Author

Listed:
  • Housiadas, Kostas D.
  • Georgiou, Georgios C.

Abstract

We derive a fully analytical solution for the steady flow of an isothermal Newtonian fluid with pressure-dependent viscosity in a rectangular duct. The analytical solution for the governing equations is exact (based on the work by Akyildiz and Siginer, Int. J. Eng. Sc., 104, 2016), while the total mass balance constraint is satisfied with a high-order asymptotic expression in terms of the dimensionless pressure-dependent coefficient ε, and an excellent improved solution derived with Shanks’ nonlinear transformation. Numerical calculations confirm the correctness, accuracy and consistency of the asymptotic expression, even for large values of ε. Results for the average pressure difference required to drive the flow are also presented and discussed, revealing the significance of the pressure-dependent viscosity even for steady, unidirectional, Newtonian flow.

Suggested Citation

  • Housiadas, Kostas D. & Georgiou, Georgios C., 2018. "Analytical solution of the flow of a Newtonian fluid with pressure-dependent viscosity in a rectangular duct," Applied Mathematics and Computation, Elsevier, vol. 322(C), pages 123-128.
  • Handle: RePEc:eee:apmaco:v:322:y:2018:i:c:p:123-128
    DOI: 10.1016/j.amc.2017.11.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300317308111
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2017.11.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Constantin Fetecau & Dumitru Vieru & Tehseen Abbas & Rahmat Ellahi, 2021. "Analytical Solutions of Upper Convected Maxwell Fluid with Exponential Dependence of Viscosity under the Influence of Pressure," Mathematics, MDPI, vol. 9(4), pages 1-22, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:322:y:2018:i:c:p:123-128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.