IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v321y2018icp472-482.html
   My bibliography  Save this article

Analytical solution of MHD slip flow past a constant wedge within a porous medium using DTM-Padé

Author

Listed:
  • Sayyed, S.R.
  • Singh, B.B.
  • Bano, Nasreen

Abstract

The objective of present study is to investigate the two-dimensional magnetohydrodynamic (MHD) flow of a viscous fluid over a constant wedge immersed in a porous medium with velocity slip condition. The flow is induced by suction/injection and also by the mainstream flow that is assumed to vary in a power-law manner with co-ordinate distance along the boundary. Similarity transformations are used to convert the governing nonlinear boundary layer equations into a third order Falkner–Skan equation. This equation is solved analytically by using a novel analytical method called DTM-Padé technique which is a combination of the differential transformation method and the Padé approximation. This method is applied to give solutions of equation with boundary condition at infinity. Graphical results are presented to investigate the effects of the velocity slip parameter, Hartmann number, permeability, suction/injection parameter and nonlinear pressure gradient on the flow-field. Further, the results of the present analysis have been compared with the corresponding results available in literature. Our results have been found in excellent agreement.

Suggested Citation

  • Sayyed, S.R. & Singh, B.B. & Bano, Nasreen, 2018. "Analytical solution of MHD slip flow past a constant wedge within a porous medium using DTM-Padé," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 472-482.
  • Handle: RePEc:eee:apmaco:v:321:y:2018:i:c:p:472-482
    DOI: 10.1016/j.amc.2017.10.062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300317307713
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2017.10.062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmad, Shafiq & Nadeem, Sohail & Muhammad, Noor & Issakhov, Alibek, 2020. "Radiative SWCNT and MWCNT nanofluid flow of Falkner–Skan problem with double stratification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    2. Badday, Alaa Jabbar & Harfash, Akil J., 2022. "Magnetohydrodynamic instability of fluid flow in a porous channel with slip boundary conditions," Applied Mathematics and Computation, Elsevier, vol. 432(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:321:y:2018:i:c:p:472-482. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.