IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v319y2018icp236-244.html
   My bibliography  Save this article

Multisensor data fusion using Elman neural networks

Author

Listed:
  • Kolanowski, Krzysztof
  • Świetlicka, Aleksandra
  • Kapela, Rafał
  • Pochmara, Janusz
  • Rybarczyk, Andrzej

Abstract

The paper presents a navigation system based on Elman Artificial Neural Network (ANN). The task of data fusion from different sensors is realized by trained ANN. Determining position in space is an issue of nonlinear hence. Not every type of ANN is used for such a task. Choice of Elman ANN was dictated by its construction and successfully applications to nonlinear problems requiring prediction. Elman network is composed of three layers. Comprises a layer of hidden layer units context which is connected to the hidden layer. Context-sensitive layer allows for store the values of previous hidden units. With this layer prediction is possible in sequential order. This is the effect of contextual memory where information is stored about what it was before. This kind of functionality is not able to provide any other standard neural network unidirectional. The system consists of MEMS (Micro Electro-Mechanical Systems) sensors, which are based on IMU (Inertial Measurement Unit). IMU is composed from gyroscopes, accelerometers and magnetometers which provide three dimensional linear accelerations and angular rates. This is a classic set of sensors for determining the position in space. The study presents the results of the implementation of algorithms for determining the position in space using trained Elman ANN. The data samples to train ANN were collected during the test flight of Quadrocopter. Paper presents the performance for different configurations of Elman ANN. Presented system provides easy addition of other sensors e.g. GPS/GLONASS receiver.

Suggested Citation

  • Kolanowski, Krzysztof & Świetlicka, Aleksandra & Kapela, Rafał & Pochmara, Janusz & Rybarczyk, Andrzej, 2018. "Multisensor data fusion using Elman neural networks," Applied Mathematics and Computation, Elsevier, vol. 319(C), pages 236-244.
  • Handle: RePEc:eee:apmaco:v:319:y:2018:i:c:p:236-244
    DOI: 10.1016/j.amc.2017.02.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300317301352
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2017.02.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinyu Wan & Qingyan Yang & Peng Jiang & Ping’an Zhong, 2019. "A Hybrid Model for Real-Time Probabilistic Flood Forecasting Using Elman Neural Network with Heterogeneity of Error Distributions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(11), pages 4027-4050, September.
    2. Xiaoqin Liu & Xiang Li & Qi Shi & Chuanpei Xu & Yanmei Tang, 2021. "UAV attitude estimation based on MARG and optical flow sensors using gated recurrent unit," International Journal of Distributed Sensor Networks, , vol. 17(4), pages 15501477211, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:319:y:2018:i:c:p:236-244. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.