IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v318y2018icp35-50.html
   My bibliography  Save this article

Hermite–Birkhoff interpolation on scattered data on the sphere and other manifolds

Author

Listed:
  • Allasia, Giampietro
  • Cavoretto, Roberto
  • De Rossi, Alessandra

Abstract

The Hermite–Birkhoff interpolation problem of a function given on arbitrarily distributed points on the sphere and other manifolds is considered. Each proposed interpolant is expressed as a linear combination of basis functions, the combination coefficients being incomplete Taylor expansions of the interpolated function at the interpolation points. The basis functions depend on the geodesic distance, are orthonormal with respect to the point-evaluation functionals, and have all derivatives equal zero up to a certain order at the interpolation points. A remarkable feature of such interpolants, which belong to the class of partition of unity methods, is that their construction does not require solving linear systems. Numerical tests are given to show the interpolation performance.

Suggested Citation

  • Allasia, Giampietro & Cavoretto, Roberto & De Rossi, Alessandra, 2018. "Hermite–Birkhoff interpolation on scattered data on the sphere and other manifolds," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 35-50.
  • Handle: RePEc:eee:apmaco:v:318:y:2018:i:c:p:35-50
    DOI: 10.1016/j.amc.2017.05.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300317303065
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2017.05.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yao, Guangming & Duo, Jia & Chen, C.S. & Shen, L.H., 2015. "Implicit local radial basis function interpolations based on function values," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 91-102.
    2. Li, Ming & Cao, Feilong, 2015. "Multiscale interpolation on the sphere: Convergence rate and inverse theorem," Applied Mathematics and Computation, Elsevier, vol. 263(C), pages 134-150.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Samir, Chafik & Adouani, Ines, 2019. "C1 interpolating Bézier path on Riemannian manifolds, with applications to 3D shape space," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 371-384.
    2. Xia, Peng & Lei, Na & Dong, Tian, 2023. "On the linearization methods for univariate Birkhoff rational interpolation," Applied Mathematics and Computation, Elsevier, vol. 445(C).
    3. Samir, Chafik & Huang, Wen, 2021. "Coordinate descent optimization for one-to-one correspondence and supervised classification of 3D shapes," Applied Mathematics and Computation, Elsevier, vol. 388(C).
    4. Mustafa, Ghulam & Hameed, Rabia, 2019. "Families of non-linear subdivision schemes for scattered data fitting and their non-tensor product extensions," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 214-240.
    5. Cavoretto, R. & De Rossi, A. & Perracchione, E., 2023. "Learning with Partition of Unity-based Kriging Estimators," Applied Mathematics and Computation, Elsevier, vol. 448(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Assari, Pouria & Asadi-Mehregan, Fatemeh & Cuomo, Salvatore, 2019. "A numerical scheme for solving a class of logarithmic integral equations arisen from two-dimensional Helmholtz equations using local thin plate splines," Applied Mathematics and Computation, Elsevier, vol. 356(C), pages 157-172.
    2. Cavoretto, Roberto, 2022. "Adaptive LOOCV-based kernel methods for solving time-dependent BVPs," Applied Mathematics and Computation, Elsevier, vol. 429(C).
    3. Biazar, Jafar & Hosami, Mohammad, 2017. "An interval for the shape parameter in radial basis function approximation," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 131-149.
    4. R. Cavoretto & A. Rossi & M. S. Mukhametzhanov & Ya. D. Sergeyev, 2021. "On the search of the shape parameter in radial basis functions using univariate global optimization methods," Journal of Global Optimization, Springer, vol. 79(2), pages 305-327, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:318:y:2018:i:c:p:35-50. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.