IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v314y2017icp44-57.html
   My bibliography  Save this article

A nonnegativity preserved efficient chemical solver applied to the air pollution forecast

Author

Listed:
  • Feng, Fan
  • Chi, Xuebin
  • Wang, Zifa
  • Li, Jie
  • Jiang, Jinrong
  • Yang, Wenyi

Abstract

Air pollution forecast is becoming more and more important nowadays. The numerically sticky chemical ordinary differential equations (ODEs) is a critical component of air pollution models. Various solvers have been designed for the chemical ODEs in the past. However, they are either slow or imprecise. In our previous work, we have designed a nonnegativity preserved efficient chemical solver MBE, which is an acronym for Modified-Backward-Euler. In this paper, we review MBE method and prove its convergence and stability mathematically, which guarantee that MBE results converge to the exact solutions as the step-size becomes smaller and MBE results with relatively small step-size can be used as the standard. Then we apply MBE to the Nested Air Quality Prediction Modeling System (NAQPMS). Comparison between MBE and the most popular solver LSODE is also made. Considering the speed and precision, MBE is a better choice for the air pollution forecast.

Suggested Citation

  • Feng, Fan & Chi, Xuebin & Wang, Zifa & Li, Jie & Jiang, Jinrong & Yang, Wenyi, 2017. "A nonnegativity preserved efficient chemical solver applied to the air pollution forecast," Applied Mathematics and Computation, Elsevier, vol. 314(C), pages 44-57.
  • Handle: RePEc:eee:apmaco:v:314:y:2017:i:c:p:44-57
    DOI: 10.1016/j.amc.2017.06.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300317304204
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2017.06.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Feng, Fan & Wang, Zifa & Li, Jie & Carmichael, Gregory R., 2015. "A nonnegativity preserved efficient algorithm for atmospheric chemical kinetic equations," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 519-531.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tan, Jing & Liu, Hui & Li, Yanfei & Yin, Shi & Yu, Chengqing, 2022. "A new ensemble spatio-temporal PM2.5 prediction method based on graph attention recursive networks and reinforcement learning," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:314:y:2017:i:c:p:44-57. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.