IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v312y2017icp1-22.html
   My bibliography  Save this article

A fourth-order extrapolated compact difference method for time-fractional convection-reaction-diffusion equations with spatially variable coefficients

Author

Listed:
  • Ren, Lei
  • Wang, Yuan-Ming

Abstract

This paper is concerned with numerical methods for a class of time-fractional convection-reaction-diffusion equations. The convection and reaction coefficients of the equation may be spatially variable. Based on the weighted and shifted Grünwald–Letnikov formula for the time-fractional derivative and a compact finite difference approximation for the spatial derivative, we establish an unconditionally stable compact difference method. The local truncation error and the solvability of the resulting scheme are discussed in detail. The stability of the method and its convergence of third-order in time and fourth-order in space are rigorously proved by the discrete energy method. Combining this method with a Richardson extrapolation, we present an extrapolated compact difference method which is fourth-order accurate in both time and space. A rigorous proof for the convergence of the extrapolation method is given. Numerical results confirm our theoretical analysis, and demonstrate the accuracy of the compact difference method and the effectiveness of the extrapolated compact difference method.

Suggested Citation

  • Ren, Lei & Wang, Yuan-Ming, 2017. "A fourth-order extrapolated compact difference method for time-fractional convection-reaction-diffusion equations with spatially variable coefficients," Applied Mathematics and Computation, Elsevier, vol. 312(C), pages 1-22.
  • Handle: RePEc:eee:apmaco:v:312:y:2017:i:c:p:1-22
    DOI: 10.1016/j.amc.2017.05.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300317303387
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2017.05.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ji, Cui-cui & Sun, Zhi-zhong, 2015. "The high-order compact numerical algorithms for the two-dimensional fractional sub-diffusion equation," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 775-791.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hajimohammadi, Zeinab & Parand, Kourosh, 2021. "Numerical learning approximation of time-fractional sub diffusion model on a semi-infinite domain," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    2. Pulido, M. Aurora P. & Sousa, J. Vanterler C. & de Oliveira, E. Capelas, 2024. "New discretization of ψ-Caputo fractional derivative and applications," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 221(C), pages 135-158.
    3. Roul, Pradip & Prasad Goura, V.M.K. & Agarwal, Ravi, 2019. "A compact finite difference method for a general class of nonlinear singular boundary value problems with Neumann and Robin boundary conditions," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 283-304.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xuhao & Wong, Patricia J.Y., 2019. "Non-polynomial spline approach in two-dimensional fractional sub-diffusion problems," Applied Mathematics and Computation, Elsevier, vol. 357(C), pages 222-242.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:312:y:2017:i:c:p:1-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.