Error estimates on a finite volume method for diffusion problems with interface on rectangular grids
Author
Abstract
Suggested Citation
DOI: 10.1016/j.amc.2017.05.029
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wang, Tongke & Zhang, Zhiyue, 2015. "A compact finite volume method and its extrapolation for elliptic equations with third boundary conditions," Applied Mathematics and Computation, Elsevier, vol. 264(C), pages 258-271.
- Ewing, Richard E. & Li, Zhilin & Lin, Tao & Lin, Yanping, 1999. "The immersed finite volume element methods for the elliptic interface problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 50(1), pages 63-76.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ahmed Ullah, Sheik & Zhao, Shan, 2020. "Pseudo-transient ghost fluid methods for the Poisson-Boltzmann equation with a two-component regularization," Applied Mathematics and Computation, Elsevier, vol. 380(C).
- Coco, A. & Semplice, M. & Serra Capizzano, S., 2020. "A level-set multigrid technique for nonlinear diffusion in the numerical simulation of marble degradation under chemical pollutants," Applied Mathematics and Computation, Elsevier, vol. 386(C).
- Zhao, Tengjin & Zhang, Zhiyue & Wang, Tongke, 2021. "A hybrid augmented compact finite volume method for the Thomas–Fermi equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 760-773.
- Zhao, Tengjin & Zhang, Zhiyue & Wang, Tongke, 2021. "A hybrid asymptotic and augmented compact finite volume method for nonlinear singular two point boundary value problems," Applied Mathematics and Computation, Elsevier, vol. 392(C).
- Mengya Su & Liuqing Xie & Zhiyue Zhang, 2022. "Numerical Analysis of Fourier Finite Volume Element Method for Dirichlet Boundary Optimal Control Problems Governed by Elliptic PDEs on Complex Connected Domains," Mathematics, MDPI, vol. 10(24), pages 1-26, December.
- Feng, Qiwei & Han, Bin & Minev, Peter, 2022. "A high order compact finite difference scheme for elliptic interface problems with discontinuous and high-contrast coefficients," Applied Mathematics and Computation, Elsevier, vol. 431(C).
More about this item
Keywords
Diffusion problems with interface; Finite volume method; Eulerian grids; Error estimates;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:311:y:2017:i:c:p:335-352. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.