IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v311y2017icp223-227.html
   My bibliography  Save this article

On total rainbow k-connected graphs

Author

Listed:
  • Sun, Yuefang
  • Jin, Zemin
  • Li, Fengwei

Abstract

A total-colored graph G is total rainbow connected if any two vertices are connected by a path whose edges and inner vertices have distinct colors. A graph G is total rainbow k-connected if there is a total-coloring of G with k colors such that G is total rainbow connected. The total rainbow connection number, denoted by trc(G), of a graph G is the smallest k to make G total rainbow k-connected. For n, k ≥ 1, define h(n, k) to be the minimum size of a total rainbow k-connected graph G of order n. In this paper, we prove a sharp upper bound for trc(G) in terms of the number of vertex-disjoint cycles of G. We also compute exact values and upper bounds for h(n, k).

Suggested Citation

  • Sun, Yuefang & Jin, Zemin & Li, Fengwei, 2017. "On total rainbow k-connected graphs," Applied Mathematics and Computation, Elsevier, vol. 311(C), pages 223-227.
  • Handle: RePEc:eee:apmaco:v:311:y:2017:i:c:p:223-227
    DOI: 10.1016/j.amc.2017.05.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300317303089
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2017.05.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:311:y:2017:i:c:p:223-227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.