IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v304y2017icp58-64.html
   My bibliography  Save this article

Total least norm solution for linear structured EIV model

Author

Listed:
  • Zhang, Songlin
  • Zhang, Kun
  • Han, Jie
  • Tong, Xiaohua

Abstract

Structured total least norm (STLN) and weighted total least squares (WTLS) have been proposed for structured EIV (errors-in-variables) models. STLN is a principle minimizing the Lp norm of the perturbation parts of an EIV model, in which p=1, 2 or ∞. STLN permits affine structure of the matrix A or [A|y] such as Toeplitz. STLN has advantages over WTLS on having ∞-norm and robust 1-norm. However, only Hankel or Toeplitz structure was discussed explicitly in STLN, and weight of errors was not discussed. While in some applications, the matrix [A|y] has arbitrary linear structure, taking linear regression and coordinate transformation as examples. This paper aims at extending STLN to L-STLN (linear structured total least norm), which can deal with EIV models having linear structures other than Toeplitz or Hankel in [A|y]. Additionally, weighted estimation is discussed. A simulated numerical example is computed by STLN and L-STLN under 1-, 2-, and ∞-norm, the results shown that L-STLN can preserve arbitrary linear structure of [A|y]. Also, the estimated correction of [A|y] by WTLS and L-STLN under 2-norm are compared. The results show that weighted L-STLN under 2-norm is consistent with WTLS. The robustness of L-STLN under 1-norm is demonstrated by simulated outlier.

Suggested Citation

  • Zhang, Songlin & Zhang, Kun & Han, Jie & Tong, Xiaohua, 2017. "Total least norm solution for linear structured EIV model," Applied Mathematics and Computation, Elsevier, vol. 304(C), pages 58-64.
  • Handle: RePEc:eee:apmaco:v:304:y:2017:i:c:p:58-64
    DOI: 10.1016/j.amc.2017.01.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300317300140
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2017.01.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:304:y:2017:i:c:p:58-64. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.