IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v303y2017icp146-164.html
   My bibliography  Save this article

The dimensional splitting iteration methods for solving saddle point problems arising from time-harmonic eddy current models

Author

Listed:
  • Ke, Yi-Fen
  • Ma, Chang-Feng

Abstract

A dimensional splitting iteration method is proposed for solving the saddle point problems arising from the finite element discretization of the hybrid formulation of the time-harmonic eddy current models, which is by making use of the special positive semidefinite splittings of the saddle point matrix. It is proved that the proposed iteration method is unconditionally convergent for both cases of simple topology and general topology. Numerical results show that the corresponding preconditioner is superior to the existing preconditioners, when those preconditioners are used to accelerate the convergence rate of Krylov subspace methods.

Suggested Citation

  • Ke, Yi-Fen & Ma, Chang-Feng, 2017. "The dimensional splitting iteration methods for solving saddle point problems arising from time-harmonic eddy current models," Applied Mathematics and Computation, Elsevier, vol. 303(C), pages 146-164.
  • Handle: RePEc:eee:apmaco:v:303:y:2017:i:c:p:146-164
    DOI: 10.1016/j.amc.2017.01.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300317300516
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2017.01.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Na & Ma, Chang-Feng, 2015. "The nonlinear inexact Uzawa hybrid algorithms based on one-step Newton method for solving nonlinear saddle-point problems," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 291-311.
    2. Shao, Xin-Hui & Li, Chen, 2015. "A generalization of preconditioned parameterized inexact Uzawa method for indefinite saddle point problems," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 691-698.
    3. Chen, Cai-Rong & Ma, Chang-Feng, 2015. "A generalized shift-splitting preconditioner for singular saddle point problems," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 947-955.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Zheng-Ge & Wang, Li-Gong & Xu, Zhong & Cui, Jing-Jing, 2017. "The generalized modified shift-splitting preconditioners for nonsymmetric saddle point problems," Applied Mathematics and Computation, Elsevier, vol. 299(C), pages 95-118.
    2. Li, Zhizhi & Chu, Risheng & Zhang, Huai, 2019. "Accelerating the shift-splitting iteration algorithm," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 421-429.
    3. Li, Chengliang & Ma, Changfeng & Xu, Xiaofang, 2020. "A class of efficient parameterized shift-splitting preconditioners for block two-by-two linear systems," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    4. Ling, Si-Tao & Liu, Qing-Bing, 2017. "New local generalized shift-splitting preconditioners for saddle point problems," Applied Mathematics and Computation, Elsevier, vol. 302(C), pages 58-67.
    5. Huang, Na & Ma, Chang-Feng & Xie, Ya-Jun, 2015. "An inexact relaxed DPSS preconditioner for saddle point problem," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 431-447.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:303:y:2017:i:c:p:146-164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.