IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v293y2017icp138-155.html
   My bibliography  Save this article

Approximation of the derivatives of solutions in a normalized domain for 2D solids using the PIES methodAuthor-Name: Bołtuć, Agnieszka

Author

Listed:
  • Zieniuk, Eugeniusz

Abstract

Numerical methods for solving boundary value problems, despite their popularity, are also affected by defects. The most troublesome are: the necessity of discretization, the calculation of singular integrals and large computational complexity. The aim of the paper is to develop a general strategy for approximation of the derivatives of solutions. The versatility of the approach is ensured by performing approximation in a normalized domain. In order to obtain efficient and accurate tool for solving the variety of boundary problems, we should combine the mentioned strategy with the method developed by the authors, called parametric integral equations system (PIES). The effectiveness of the proposed approach lies in: lack of the discretization of both a boundary and a domain, less computational complexity, possibility of determining the derivatives of solutions in a continuous manner at any point of the boundary and the domain without the necessity of calculating singular integrals. The paper presents the different variants of the proposed strategy. Tests were performed on the examples of elastic bodies with various shapes and boundary conditions. The reliability of the proposed approach is shown in comparison to existing analytical solutions. The normalized approximation strategy for derivatives in combination with the PIES method gives accurate results, which are obtained in elementary and efficient way.

Suggested Citation

  • Zieniuk, Eugeniusz, 2017. "Approximation of the derivatives of solutions in a normalized domain for 2D solids using the PIES methodAuthor-Name: Bołtuć, Agnieszka," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 138-155.
  • Handle: RePEc:eee:apmaco:v:293:y:2017:i:c:p:138-155
    DOI: 10.1016/j.amc.2016.08.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300316305136
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2016.08.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Yanmin & Bu, Weiping & Huang, Jianfei & Liu, Da-Yan & Tang, Yifa, 2015. "Finite element method for two-dimensional space-fractional advection–dispersion equations," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 553-565.
    2. Liu, Q. & Liu, F. & Gu, Y.T. & Zhuang, P. & Chen, J. & Turner, I., 2015. "A meshless method based on Point Interpolation Method (PIM) for the space fractional diffusion equation," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 930-938.
    3. Zhang, Y.M. & Liu, Z.Y. & Gao, X.W. & Sladek, V. & Sladek, J., 2014. "A novel boundary element approach for solving the 2D elasticity problems," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 568-580.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    2. Saberi Zafarghandi, Fahimeh & Mohammadi, Maryam & Babolian, Esmail & Javadi, Shahnam, 2019. "Radial basis functions method for solving the fractional diffusion equations," Applied Mathematics and Computation, Elsevier, vol. 342(C), pages 224-246.
    3. Nyamoradi, Nemat & Rodríguez-López, Rosana, 2015. "On boundary value problems for impulsive fractional differential equations," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 874-892.
    4. Saffarian, Marziyeh & Mohebbi, Akbar, 2022. "Finite difference/spectral element method for one and two-dimensional Riesz space fractional advection–dispersion equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 348-370.
    5. Shi, Z.G. & Zhao, Y.M. & Liu, F. & Wang, F.L. & Tang, Y.F., 2018. "Nonconforming quasi-Wilson finite element method for 2D multi-term time fractional diffusion-wave equation on regular and anisotropic meshes," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 290-304.
    6. Zeng, Yunhua & Tan, Zhijun, 2022. "Two-grid finite element methods for nonlinear time fractional variable coefficient diffusion equations," Applied Mathematics and Computation, Elsevier, vol. 434(C).
    7. Yang, Hong & Lao, Cheng-Xue & She, Zi-Hang, 2023. "Fast solution methods for Riesz space fractional diffusion equations with non-separable coefficients," Applied Mathematics and Computation, Elsevier, vol. 445(C).
    8. She, Zi-Hang & Qiu, Li-Min & Qu, Wei, 2023. "An unconditionally convergent RSCSCS iteration method for Riesz space fractional diffusion equations with variable coefficients," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 633-646.
    9. Eyaya Fekadie Anley & Zhoushun Zheng, 2020. "Finite Difference Method for Two-Sided Two Dimensional Space Fractional Convection-Diffusion Problem with Source Term," Mathematics, MDPI, vol. 8(11), pages 1-27, October.
    10. Y. Esmaeelzade Aghdam & H. Mesgarani & A. Adl & B. Farnam, 2023. "The Convergence Investigation of a Numerical Scheme for the Tempered Fractional Black-Scholes Model Arising European Double Barrier Option," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 513-528, February.
    11. Zhao, Jingjun & Zhao, Wenjiao & Xu, Yang, 2021. "Lagrange nodal discontinuous Galerkin method for fractional Navier-Stokes equations," Applied Mathematics and Computation, Elsevier, vol. 391(C).
    12. Zhao, Jingjun & Zhao, Wenjiao & Xu, Yang, 2023. "Hybridizable discontinuous Galerkin methods for space-time fractional advection-dispersion equations," Applied Mathematics and Computation, Elsevier, vol. 442(C).
    13. Qu, Wei & Li, Zhi, 2021. "Fast direct solver for CN-ADI-FV scheme to two-dimensional Riesz space-fractional diffusion equations," Applied Mathematics and Computation, Elsevier, vol. 401(C).
    14. Jie Zhao & Hong Li & Zhichao Fang & Yang Liu, 2019. "A Mixed Finite Volume Element Method for Time-Fractional Reaction-Diffusion Equations on Triangular Grids," Mathematics, MDPI, vol. 7(7), pages 1-18, July.
    15. Mohammed M. Al-Shomrani & Mohamed A. Abdelkawy & António M. Lopes, 2023. "Spectral Collocation Technique for Solving Two-Dimensional Multi-Term Time Fractional Viscoelastic Non-Newtonian Fluid Model," Mathematics, MDPI, vol. 11(9), pages 1-14, April.
    16. H. Ghafouri & M. Ranjbar & A. Khani, 2020. "The Use of Partial Fractional Form of A-Stable Padé Schemes for the Solution of Fractional Diffusion Equation with Application in Option Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 56(4), pages 695-709, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:293:y:2017:i:c:p:138-155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.