IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v289y2016icp481-485.html
   My bibliography  Save this article

Note on the perfect EIC-graphs

Author

Listed:
  • Yue, Jun
  • Zhang, Shiliang
  • Zhang, Xia

Abstract

Three edges e1, e2 and e3 in a graph G are consecutive if they form a path (in this order) or a cycle of length 3. The injective edge coloring number χi′(G) is the minimum number of colors permitted in a coloring of the edges of G such that if e1, e2 and e3 are consecutive edges in G, then e1 and e3 receive the different colors. Let ω′ denote the number of edges in a maximum clique of G. A graph G is called an ω′ edge injective colorable (or perfect EIC-)graph if χi′(G)=ω′. In this paper, we give a sharp bound of the injective coloring number of a 2-connected graph with some forbidden conditions, and then we also characterize some perfect EIC-graph classes, which extends the results of perfect EIC-graph of Cardoso et al. in [Injective edge chromatic index of a graph, http://arxiv.org/abs/1510.02626.].

Suggested Citation

  • Yue, Jun & Zhang, Shiliang & Zhang, Xia, 2016. "Note on the perfect EIC-graphs," Applied Mathematics and Computation, Elsevier, vol. 289(C), pages 481-485.
  • Handle: RePEc:eee:apmaco:v:289:y:2016:i:c:p:481-485
    DOI: 10.1016/j.amc.2016.05.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S009630031630340X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2016.05.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Shasha & Li, Xueliang & Shi, Yongtang, 2015. "Note on the complexity of deciding the rainbow (vertex-) connectedness for bipartite graphs," Applied Mathematics and Computation, Elsevier, vol. 258(C), pages 155-161.
    2. Min Chen & Geňa Hahn & André Raspaud & Weifan Wang, 2012. "Some results on the injective chromatic number of graphs," Journal of Combinatorial Optimization, Springer, vol. 24(3), pages 299-318, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yue, Jun & Wei, Meiqin & Li, Min & Liu, Guodong, 2018. "On the double Roman domination of graphs," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 669-675.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yongtang Shi & Meiqin Wei & Jun Yue & Yan Zhao, 2017. "Coupon coloring of some special graphs," Journal of Combinatorial Optimization, Springer, vol. 33(1), pages 156-164, January.
    2. Chen, Lin & Li, Xueliang & Liu, Jinfeng, 2017. "The k-proper index of graphs," Applied Mathematics and Computation, Elsevier, vol. 296(C), pages 57-63.
    3. Li, Jingjian & Xu, Shangjin & Cao, Mengyue & Kang, Zhe, 2017. "On tetravalent symmetric dihedrants," Applied Mathematics and Computation, Elsevier, vol. 306(C), pages 49-55.
    4. Cai, Jiansheng & Li, Wenwen & Cai, Wenjing & Dehmer, Matthias, 2023. "List injective coloring of planar graphs," Applied Mathematics and Computation, Elsevier, vol. 439(C).
    5. Li, Jing Jian & Ling, Bo & Liu, Guodong, 2018. "A characterisation on arc-transitive graphs of prime valency," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 227-233.
    6. Qing Cui & Zhenmeng Han, 2024. "Injective edge-coloring of claw-free subcubic graphs," Journal of Combinatorial Optimization, Springer, vol. 47(5), pages 1-32, July.
    7. Yuehua Bu & Kai Lu & Sheng Yang, 2015. "Two smaller upper bounds of list injective chromatic number," Journal of Combinatorial Optimization, Springer, vol. 29(2), pages 373-388, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:289:y:2016:i:c:p:481-485. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.