IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v286y2016icp265-278.html
   My bibliography  Save this article

Bending of a rectangular plate with rotationally restrained edges under a concentrated force

Author

Listed:
  • Shi, Wencong
  • Li, X.-F.
  • Wang, C.Y.

Abstract

The bending problem of a rectangular plate with rotationally restrained edges under a concentrated force is studied. An emphasis is placed on the determination of the corner forces and deflection. The problem is solved by superposition of classical Navier’s and Levy’s solutions. Analytic solutions in terms of series are obtained for RSSS, RRSS and RSRS plates, respectively, where R and S stand for rotational restraint and simple support, respectively. Some important design parameters such as maximum deflection and corner force are evaluated. The effect of edge restraint on these parameters is illustrated.

Suggested Citation

  • Shi, Wencong & Li, X.-F. & Wang, C.Y., 2016. "Bending of a rectangular plate with rotationally restrained edges under a concentrated force," Applied Mathematics and Computation, Elsevier, vol. 286(C), pages 265-278.
  • Handle: RePEc:eee:apmaco:v:286:y:2016:i:c:p:265-278
    DOI: 10.1016/j.amc.2016.04.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S009630031630279X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2016.04.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:286:y:2016:i:c:p:265-278. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.