IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v284y2016icp209-218.html
   My bibliography  Save this article

Forcing polynomials of benzenoid parallelogram and its related benzenoids

Author

Listed:
  • Zhao, Shuang
  • Zhang, Heping

Abstract

Klein and Randić introduced the innate degree of freedom (forcing number) of a Kekulé structure (perfect matching) M of a graph G as the smallest cardinality of subsets of M that are contained in no other Kekulé structures of G, and the innate degree of freedom of the entire G as the sum over the forcing numbers of all perfect matchings of G. We proposed the forcing polynomial of G as a counting polynomial for perfect matchings with the same forcing number. In this paper, we obtain recurrence relations of the forcing polynomial for benzenoid parallelogram and its related benzenoids. In particular, for benzenoid parallelogram, we derive explicit expressions of its forcing polynomial and innate degree of freedom by generating functions.

Suggested Citation

  • Zhao, Shuang & Zhang, Heping, 2016. "Forcing polynomials of benzenoid parallelogram and its related benzenoids," Applied Mathematics and Computation, Elsevier, vol. 284(C), pages 209-218.
  • Handle: RePEc:eee:apmaco:v:284:y:2016:i:c:p:209-218
    DOI: 10.1016/j.amc.2016.03.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300316302004
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2016.03.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Matthias Dehmer & Frank Emmert-Streib & Yongtang Shi & Monica Stefu & Shailesh Tripathi, 2015. "Discrimination Power of Polynomial-Based Descriptors for Graphs by Using Functional Matrices," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-10, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Lingjuan & Zhang, Heping & Zhao, Lifang, 2022. "The anti-forcing spectra of (4,6)-fullerenes," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    2. Zhang, Yaxian & Zhang, Heping, 2022. "Continuous forcing spectrum of regular hexagonal polyhexes," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    3. Zhai, Shaohui & Alrowaili, Dalal & Ye, Dong, 2018. "Clar structures vs Fries structures in hexagonal systems," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 384-394.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lang, Rongling & Li, Tao & Mo, Desen & Shi, Yongtang, 2016. "A novel method for analyzing inverse problem of topological indices of graphs using competitive agglomeration," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 115-121.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:284:y:2016:i:c:p:209-218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.