IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v282y2016icp204-215.html
   My bibliography  Save this article

Linear least squares problems involving fixed knots polynomial splines and their singularity study

Author

Listed:
  • Roshan Zamir, Z.
  • Sukhorukova, N.

Abstract

In this paper, we study a class of approximation problems appearing in data approximation and signal processing. The approximations are constructed as combinations of polynomial splines (piecewise polynomials) whose parameters are subject to optimisation and so called prototype functions whose choice is based on the application rather than optimisation. We investigate two types of models, namely Model 1 and Model 2 in order to analyse the singularity of their system matrices. The main difference between these two models is that in Model 2, the signal is shifted vertically (signal biasing) by a polynomial spline function. The corresponding optimisation problems can be formulated as Linear Least Squares Problems (LLSPs). If the system matrix is non-singular, then, the corresponding problem can be solved inexpensively and efficiently, while for singular cases, slower (but more robust) methods have to be used. To choose a better suited method for solving the corresponding LLSPs we have developed a singularity verification rule. In this paper, we develop necessary and sufficient conditions for non-singularity of Model 1 and sufficient conditions for non-singularity of Model 2. These conditions can be verified much faster than the direct singularity verification of the system matrices. Therefore, the algorithm efficiency can be improved by choosing a suitable method for solving the corresponding LLSPs.

Suggested Citation

  • Roshan Zamir, Z. & Sukhorukova, N., 2016. "Linear least squares problems involving fixed knots polynomial splines and their singularity study," Applied Mathematics and Computation, Elsevier, vol. 282(C), pages 204-215.
  • Handle: RePEc:eee:apmaco:v:282:y:2016:i:c:p:204-215
    DOI: 10.1016/j.amc.2016.02.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S009630031630114X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2016.02.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peiris, V. & Sharon, N. & Sukhorukova, N. & Ugon, J., 2021. "Generalised rational approximation and its application to improve deep learning classifiers," Applied Mathematics and Computation, Elsevier, vol. 389(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:282:y:2016:i:c:p:204-215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.