IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v281y2016icp102-120.html
   My bibliography  Save this article

On polynomials associated with an Uvarov modification of a quartic potential Freud-like weight

Author

Listed:
  • Arceo, Alejandro
  • Huertas, Edmundo J.
  • Marcellán, Francisco

Abstract

In this contribution we consider sequences of monic polynomials orthogonal with respect to the standard Freud-like inner product involving a quartic potential 〈p,q〉=∫Rp(x)q(x)e−x4+2tx2dx+Mp(0)q(0).We analyze some properties of these polynomials, such as the ladder operators and the holonomic equation that they satisfy and, as an application, we give an electrostatic interpretation of their zero distribution in terms of a logarithmic potential interaction under the action of an external field. It is also shown that the coefficients of their three term recurrence relation satisfy a nonlinear difference string equation. Finally, an equation of motion for their zeros in terms of their dependence on t is given.

Suggested Citation

  • Arceo, Alejandro & Huertas, Edmundo J. & Marcellán, Francisco, 2016. "On polynomials associated with an Uvarov modification of a quartic potential Freud-like weight," Applied Mathematics and Computation, Elsevier, vol. 281(C), pages 102-120.
  • Handle: RePEc:eee:apmaco:v:281:y:2016:i:c:p:102-120
    DOI: 10.1016/j.amc.2016.01.048
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300316300480
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2016.01.048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:281:y:2016:i:c:p:102-120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.