IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v277y2016icp44-53.html
   My bibliography  Save this article

Two population three-player prisoner’s dilemma game

Author

Listed:
  • EL-Seidy, Essam
  • Elshobaky, Entisarat.M.
  • Soliman, Karim.M.

Abstract

Due to the computational advantage in symmetric games, most researches have focused on the symmetric games instead of the asymmetric ones which need more computations. In this paper, we present prisoner’s dilemma game involving three players, and suppose that two players among them agree against the third player by choosing either to cooperate together or to defect together at each round. According to that assumption, the game is transformed from the symmetric three- player model to asymmetric two-player model such that, the identities of the players cannot be interchanged without interchanging the payoff of the strategies. Each strategy in the resulting model is expressed with two state automata. We determine the payoff matrix corresponding to the all possible strategies. We noticed that, for some strategies, it is better to be a player of the first type (independent player) than being of the second type (allies).

Suggested Citation

  • EL-Seidy, Essam & Elshobaky, Entisarat.M. & Soliman, Karim.M., 2016. "Two population three-player prisoner’s dilemma game," Applied Mathematics and Computation, Elsevier, vol. 277(C), pages 44-53.
  • Handle: RePEc:eee:apmaco:v:277:y:2016:i:c:p:44-53
    DOI: 10.1016/j.amc.2015.12.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315300357
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.12.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andreoni, James A & Miller, John H, 1993. "Rational Cooperation in the Finitely Repeated Prisoner's Dilemma: Experimental Evidence," Economic Journal, Royal Economic Society, vol. 103(418), pages 570-585, May.
    2. Friedman, Daniel, 1991. "Evolutionary Games in Economics," Econometrica, Econometric Society, vol. 59(3), pages 637-666, May.
    3. Hammerstein, Peter & Selten, Reinhard, 1994. "Game theory and evolutionary biology," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 2, chapter 28, pages 929-993, Elsevier.
    4. Imhof, Lorens & Nowak, Martin & Fudenberg, Drew, 2007. "Tit-for-Tat or Win-Stay, Lose-Shift?," Scholarly Articles 3200671, Harvard University Department of Economics.
    5. El-Seidy, Essam & Soliman, Karim.M., 2016. "Iterated symmetric three-player prisoner’s dilemma game," Applied Mathematics and Computation, Elsevier, vol. 282(C), pages 117-127.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yifan & Shu, Gang & Li, Ya, 2017. "Strategy-updating depending on local environment enhances cooperation in prisoner’s dilemma game," Applied Mathematics and Computation, Elsevier, vol. 301(C), pages 224-232.
    2. Li, Dandan & Zhou, Kai & Sun, Mei & Han, Dun, 2023. "Investigating the effectiveness of individuals’ historical memory for the evolution of the prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    3. El-Salam, Salsabeel M. Abd & El-Seidy, Essam & Abdel-Malek, Amira R., 2023. "Evaluating zero-determinant strategies’ effects on cooperation and conflict resolution in repeated games," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    4. Taha, Mohammad A. & Ghoneim, Ayman, 2020. "Zero-determinant strategies in repeated asymmetric games," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    5. Taha, Mohammad A. & Ghoneim, Ayman, 2021. "Zero-determinant strategies in infinitely repeated three-player prisoner's dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El-Seidy, Essam & Soliman, Karim.M., 2016. "Iterated symmetric three-player prisoner’s dilemma game," Applied Mathematics and Computation, Elsevier, vol. 282(C), pages 117-127.
    2. Vogt, Carsten, 2000. "The evolution of cooperation in Prisoners' Dilemma with an endogenous learning mutant," Journal of Economic Behavior & Organization, Elsevier, vol. 42(3), pages 347-373, July.
    3. Morrison, William G., 1996. "Instincts as reflex choice: Does loss of temper have strategic value?," Journal of Economic Behavior & Organization, Elsevier, vol. 31(3), pages 335-356, December.
    4. Ochea, Marius-Ionut, 2013. "Evolution of repeated prisoner's dilemma play under logit dynamics," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2483-2499.
    5. Li, Ye & Yang, Tianjian & Zhang, Yu, 2022. "Evolutionary game theory-based system dynamics modeling for community solid waste classification in China," Utilities Policy, Elsevier, vol. 79(C).
    6. Elvio Accinelli & Juan Gabriel Brida & Edgar Carrera & Lionello Punzo, 2006. "Dinámica evolutiva en un modelo de interacción entre visitantes y residentes de una localidad turística," Documentos de Trabajo (working papers) 1606, Department of Economics - dECON.
    7. Weibull, Jörgen W., 1997. "What have we learned from Evolutionary Game Theory so far?," Working Paper Series 487, Research Institute of Industrial Economics, revised 26 Oct 1998.
    8. Brosig, Jeannette, 2002. "Identifying cooperative behavior: some experimental results in a prisoner's dilemma game," Journal of Economic Behavior & Organization, Elsevier, vol. 47(3), pages 275-290, March.
    9. Hoffler, Felix, 1999. "Some play fair, some don't: Reciprocal fairness in a stylized principal-agent problem," Journal of Economic Behavior & Organization, Elsevier, vol. 38(1), pages 113-131, January.
    10. Kyung Hwan Baik & Subhasish M. Chowdhury & Abhijit Ramalingam, 2021. "Group size and matching protocol in contests," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 54(4), pages 1716-1736, November.
    11. Qianru Chen & Hualin Xie & Qunli Zhai, 2022. "Management Policy of Farmers’ Cultivated Land Abandonment Behavior Based on Evolutionary Game and Simulation Analysis," Land, MDPI, vol. 11(3), pages 1-23, February.
    12. Lichi Zhang & Yanyan Jiang & Junmin Wu, 2022. "Evolutionary Game Analysis of Government and Residents’ Participation in Waste Separation Based on Cumulative Prospect Theory," IJERPH, MDPI, vol. 19(21), pages 1-16, November.
    13. Güth, W., 1997. "Boundedly Rational Decision Emergence -A General Perspective and Some Selective Illustrations-," SFB 373 Discussion Papers 1997,29, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    14. Markus C. Arnold & Eva Ponick, 2006. "Kommunikation im Groves-Mechanismus — Ergebnisse eines Laborexperiments," Schmalenbach Journal of Business Research, Springer, vol. 58(1), pages 89-120, February.
    15. Kamei, Kenju, 2016. "Information Disclosure and Cooperation in a Finitely-repeated Dilemma: Experimental Evidence," MPRA Paper 75100, University Library of Munich, Germany.
    16. Evans, Alecia & Sesmero, Juan, 2022. "Cooperation in Social Dilemmas with Correlated Noisy Payoffs: Theory and Experimental Evidence," 2021 Annual Meeting, August 1-3, Austin, Texas 322804, Agricultural and Applied Economics Association.
    17. Robert S. Gibbons & Manuel Grieder & Holger Herz & Christian Zehnder, 2019. "Building an Equilibrium: Rules Versus Principles in Relational Contracts," CESifo Working Paper Series 7871, CESifo.
    18. Gu, Tianqi & Xu, Weiping & Liang, Hua & He, Qing & Zheng, Nan, 2024. "School bus transport service strategies’ policy-making mechanism – An evolutionary game approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 182(C).
    19. Wang Mingbao & Du Zhiping & Duan Hong, 2017. "Study on Participant Behavior Game of Electronic Products Reverse Supply Chain Based on ECP," Journal of Systems Science and Information, De Gruyter, vol. 5(5), pages 411-434, October.
    20. Sun, Yong & Liu, Baoyin & Sun, Zhongrui & Yang, Ruijia, 2023. "Inter-regional cooperation in the transfers of energy-intensive industry: An evolutionary game approach," Energy, Elsevier, vol. 282(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:277:y:2016:i:c:p:44-53. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.