IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v271y2015icp489-501.html
   My bibliography  Save this article

Computation of a multi-choice goal programming problem

Author

Listed:
  • Patro, Kanan K.
  • Acharya, M.M.
  • Biswal, M.P.
  • Acharya, Srikumar

Abstract

The standard goal programming problem allows decision maker to assign an aspiration level to an objective function. In real life decision making problems, the decision maker always seeks for suitable aspiration level i.e. “the more suitable the better”. Therefore, a decision maker is allowed to assign multiple number of aspiration levels to an objective function. The aim of the decision maker is to select an appropriate aspiration level for an objective function that minimizes the deviations between the achievement of goal and the aspiration levels. The traditional goal programming techniques cannot be used for solving such type of multi-choice goal programming problem. This paper presents an equivalent model of the multi-choice goal programming problem by using Vandermonde’s interpolating polynomial, binary variables and least square approximation method. The equivalent model is solved by existing method/software. Two illustrative examples are presented in support of the proposed methodology.

Suggested Citation

  • Patro, Kanan K. & Acharya, M.M. & Biswal, M.P. & Acharya, Srikumar, 2015. "Computation of a multi-choice goal programming problem," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 489-501.
  • Handle: RePEc:eee:apmaco:v:271:y:2015:i:c:p:489-501
    DOI: 10.1016/j.amc.2015.09.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315012667
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.09.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ching-Ter Chang & Cheng-Yuan Ku & Hui-Ping Ho & Chechen Liao, 2011. "A MCGP decision aid for homebuyers to make the best choice," Quality & Quantity: International Journal of Methodology, Springer, vol. 45(4), pages 969-983, June.
    2. Tamiz, Mehrdad & Jones, Dylan & Romero, Carlos, 1998. "Goal programming for decision making: An overview of the current state-of-the-art," European Journal of Operational Research, Elsevier, vol. 111(3), pages 569-581, December.
    3. Chang, Ching-Ter, 2007. "Multi-choice goal programming," Omega, Elsevier, vol. 35(4), pages 389-396, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, Xiao-Xue & Chang, Ching-Ter, 2021. "Topology design of remote patient monitoring system concerning qualitative and quantitative issues," Omega, Elsevier, vol. 98(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hocine, Amine & Kouaissah, Noureddine & Bettahar, Samir & Benbouziane, Mohamed, 2018. "Optimizing renewable energy portfolios under uncertainty: A multi-segment fuzzy goal programming approach," Renewable Energy, Elsevier, vol. 129(PA), pages 540-552.
    2. Ching-Ter Chang & Cheng-Yuan Ku & Hui-Ping Ho & Chechen Liao, 2011. "A MCGP decision aid for homebuyers to make the best choice," Quality & Quantity: International Journal of Methodology, Springer, vol. 45(4), pages 969-983, June.
    3. Sankar Kumar Roy & Gurupada Maity & Gerhard-Wilhelm Weber, 2017. "Multi-objective two-stage grey transportation problem using utility function with goals," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(2), pages 417-439, June.
    4. Chang, Ching-Ter, 2011. "Multi-choice goal programming with utility functions," European Journal of Operational Research, Elsevier, vol. 215(2), pages 439-445, December.
    5. Sankar Kumar Roy & Gurupada Maity & Gerhard Wilhelm Weber & Sirma Zeynep Alparslan Gök, 2017. "Conic scalarization approach to solve multi-choice multi-objective transportation problem with interval goal," Annals of Operations Research, Springer, vol. 253(1), pages 599-620, June.
    6. Chang, Ching-Ter & Chung, Cheng-Kung & Sheu, Jiuh-Biing & Zhuang, Zheng-Yun & Chen, Huang-Mu, 2014. "The optimal dual-pricing policy of mall parking service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 70(C), pages 223-243.
    7. Bilbao-Terol, Amelia & Arenas-Parra, Mar & Cañal-Fernández, Verónica, 2016. "A model based on Copula Theory for sustainable and social responsible investments," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 19(1), pages 55-76.
    8. Hocine, Amin & Zhuang, Zheng-Yun & Kouaissah, Noureddine & Li, Der-Chiang, 2020. "Weighted-additive fuzzy multi-choice goal programming (WA-FMCGP) for supporting renewable energy site selection decisions," European Journal of Operational Research, Elsevier, vol. 285(2), pages 642-654.
    9. Zheng-Yun Zhuang & Chi-Kit Ho & Paul Juinn Bing Tan & Jia-Ming Ying & Jin-Hua Chen, 2020. "The Optimal Setting of A/B Exam Papers without Item Pools: A Hybrid Approach of IRT and BGP," Mathematics, MDPI, vol. 8(8), pages 1-29, August.
    10. Zheng, Xiao-Xue & Chang, Ching-Ter, 2021. "Topology design of remote patient monitoring system concerning qualitative and quantitative issues," Omega, Elsevier, vol. 98(C).
    11. Shalabh Singh & Sonia Singh, 2022. "Shipment in a multi-choice environment: a case study of shipping carriers in US," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(4), pages 1195-1219, December.
    12. Hocine, Amin & Kouaissah, Noureddine & Lozza, Sergio Ortobelli & Aouam, Tarik, 2024. "Modelling De novo programming within Simon’s satisficing theory: Methods and application in designing an optimal offshore wind farm location system," European Journal of Operational Research, Elsevier, vol. 315(1), pages 289-306.
    13. Zhuang, Zheng-Yun & Chung, Cheng-Kung, 2024. "Dissecting the visiting willingness of driving visitors facing a retail market's dual-pricing policy for parking," Journal of Retailing and Consumer Services, Elsevier, vol. 78(C).
    14. Şeyda Gür & Tamer Eren, 2018. "Scheduling and Planning in Service Systems with Goal Programming: Literature Review," Mathematics, MDPI, vol. 6(11), pages 1-16, November.
    15. Chang, Ching-Ter, 2015. "Multi-choice goal programming model for the optimal location of renewable energy facilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 379-389.
    16. Carlin C. F. Chu & Simon S. W. Li, 2024. "A multiobjective optimization approach for threshold determination in extreme value analysis for financial time series," Computational Management Science, Springer, vol. 21(1), pages 1-14, June.
    17. Ghazale Kordi & Parsa Hasanzadeh-Moghimi & Mohammad Mahdi Paydar & Ebrahim Asadi-Gangraj, 2023. "A multi-objective location-routing model for dental waste considering environmental factors," Annals of Operations Research, Springer, vol. 328(1), pages 755-792, September.
    18. Demirci, Mehmet & Bettinger, Pete, 2015. "Using mixed integer multi-objective goal programming for stand tending block designation: A case study from Turkey," Forest Policy and Economics, Elsevier, vol. 55(C), pages 28-36.
    19. Fleskens, Luuk & Graaff, Jan de, 2010. "Conserving natural resources in olive orchards on sloping land: Alternative goal programming approaches towards effective design of cross-compliance and agri-environmental measures," Agricultural Systems, Elsevier, vol. 103(8), pages 521-534, October.
    20. G Mavrotas & E Georgopoulou & S Mirasgedis & Y Sarafidis & D Lalas & V Hontou & N Gakis, 2009. "Multi-objective combinatorial optimization for selecting best available techniques (BAT) in the industrial sector: the COMBAT tool," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(7), pages 906-920, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:271:y:2015:i:c:p:489-501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.