IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v270y2015icp441-457.html
   My bibliography  Save this article

Optimal global approximation of SDEs with time-irregular coefficients in asymptotic setting

Author

Listed:
  • Przybyłowicz, Paweł

Abstract

We investigate strong approximation of solutions of scalar stochastic differential equations (SDEs) with irregular coefficients. In Przybyłowicz (2015) [23], an approximation of solutions of SDEs at a single point is considered (such kind of approximation is also called a one-point approximation). Comparing to that article, we are interested here in a global reconstruction of trajectories of the solutions of SDEs in a whole interval of existence. We assume that a drift coefficient a:[0,T]×R→R is globally Lipschitz continuous with respect to a space variable, but only measurable with respect to a time variable. A diffusion coefficient b:[0,T]→R is only piecewise Hölder continuous with Hölder exponent ϱ ∈ (0, 1]. The algorithm and results concerning lower bounds from Przybyłowicz (2015) [23] cannot be applied for this problem, and therefore we develop a suitable new technique. In order to approximate solutions of SDEs under such assumptions we define a discrete type randomized Euler scheme. We provide the error analysis of the algorithm, showing that its error is O(n−min{ϱ,1/2}). Moreover, we prove that, roughly speaking, the error of an arbitrary algorithm (for fixed a and b) that uses n values of the diffusion coefficient, cannot converge to zero faster than n−min{ϱ,1/2} as n→+∞. Hence, the proposed version of the randomized Euler scheme achieves the established best rate of convergence.

Suggested Citation

  • Przybyłowicz, Paweł, 2015. "Optimal global approximation of SDEs with time-irregular coefficients in asymptotic setting," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 441-457.
  • Handle: RePEc:eee:apmaco:v:270:y:2015:i:c:p:441-457
    DOI: 10.1016/j.amc.2015.08.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315011108
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.08.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:270:y:2015:i:c:p:441-457. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.