IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v270y2015icp156-164.html
   My bibliography  Save this article

Collocation method for linear and nonlinear Fredholm and Volterra integral equations

Author

Listed:
  • Ebrahimi, Nehzat
  • Rashidinia, Jalil

Abstract

A collocation procedure is developed for the linear and nonlinear Fredholm and Volterra integral equations, using the globally defined B-spline and auxiliary basis functions. The solution is collocated by cubic B-spline and then the integral equation is approximated by the 5-points Gauss–Turán quadrature formula with respect to the Legendre weight function. Combination of these two approaches is the main idea of this paper to reduce the cost of computation and complexity. The error analysis of proposed numerical method is studied theoretically. Numerical results are given to illustrate the efficiency of the proposed method. The results are compared with the results obtained by other methods to verify that this method is accurate and efficient.

Suggested Citation

  • Ebrahimi, Nehzat & Rashidinia, Jalil, 2015. "Collocation method for linear and nonlinear Fredholm and Volterra integral equations," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 156-164.
  • Handle: RePEc:eee:apmaco:v:270:y:2015:i:c:p:156-164
    DOI: 10.1016/j.amc.2015.08.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315010875
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.08.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:270:y:2015:i:c:p:156-164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.