IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v269y2015icp118-128.html
   My bibliography  Save this article

Efficient Chebyshev collocation methods for solving optimal control problems governed by Volterra integral equations

Author

Listed:
  • Tang, Xiaojun

Abstract

The main purpose of this work is to provide efficient Chebyshev collocation methods for solving optimal control problems (OCPs) governed by Volterra integral equations. The basic principle of our approach is to approximate the state and control using the Chebyshev polynomials and collocate the dynamic constraints at the Chebyshev-type points. Furthermore, we present an exact, efficient, and stable approach for computing the associated Chebyshev integration matrices. Numerical results on benchmark OCPs demonstrate the spectral rate of convergence for the proposed methods.

Suggested Citation

  • Tang, Xiaojun, 2015. "Efficient Chebyshev collocation methods for solving optimal control problems governed by Volterra integral equations," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 118-128.
  • Handle: RePEc:eee:apmaco:v:269:y:2015:i:c:p:118-128
    DOI: 10.1016/j.amc.2015.07.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315009741
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.07.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Frédéric Bonnans & Constanza Vega & Xavier Dupuis, 2013. "First- and Second-Order Optimality Conditions for Optimal Control Problems of State Constrained Integral Equations," Journal of Optimization Theory and Applications, Springer, vol. 159(1), pages 1-40, October.
    2. C. De La Vega, 2006. "Necessary Conditions for Optimal Terminal Time Control Problems Governed by a Volterra Integral Equation," Journal of Optimization Theory and Applications, Springer, vol. 130(1), pages 79-93, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Avram, Florin & Freddi, Lorenzo & Goreac, Dan, 2022. "Optimal control of a SIR epidemic with ICU constraints and target objectives," Applied Mathematics and Computation, Elsevier, vol. 418(C).
    2. J. Frédéric Bonnans & Constanza Vega & Xavier Dupuis, 2013. "First- and Second-Order Optimality Conditions for Optimal Control Problems of State Constrained Integral Equations," Journal of Optimization Theory and Applications, Springer, vol. 159(1), pages 1-40, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:269:y:2015:i:c:p:118-128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.