IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v268y2015icp478-488.html
   My bibliography  Save this article

A new algorithm for seasonal precipitation forecast based on global atmospheric hydrological water budget

Author

Listed:
  • Wu, Yong-Ping
  • Feng, Guo-Lin

Abstract

Precipitation forecast has been identified as one of the central issues in climate research. However, the underlying mechanisms of precipitation are far from being understood. In this paper, a new algorithm of forecasting precipitation based on law of conservation of mass in hydrological cycle is proposed and its feasibility is verified. The algorithm mainly include three steps: in the first step, the area we employ is divided into a number of sub-areas, the precipitation source and evaporation whereabouts equations for sub-regions are established, and the rationality of them can be verified by checking whether the precipitation source and evaporation equations meet a self-consistent relationship or not; in the second step, a conversion equation for sub-regional precipitation prediction will be established, which characterize the relationship between precipitation and evaporation in the sub-areas; in the last step, if the regional evaporation, precipitation and moisture divergence (convergence) function keep stable in a certain time scale, then precipitation forecast is achieved by evaporation anomalies and moisture divergence function, which can be predicted according to the prophase sea surface temperature and atmospheric circulation. Finally, the northern and southern hemispheres seasonal precipitation, evaporation and moisture divergence (convergence) weighting coefficients are calculated using this algorithm based on European centre for medium-range weather forecasts (ECMWF) interim re-analysis (ERA-Interim) dataset, which well verifies the feasibility of the algorithm. The obtained results may provide new insights for precipitation forecast in the future.

Suggested Citation

  • Wu, Yong-Ping & Feng, Guo-Lin, 2015. "A new algorithm for seasonal precipitation forecast based on global atmospheric hydrological water budget," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 478-488.
  • Handle: RePEc:eee:apmaco:v:268:y:2015:i:c:p:478-488
    DOI: 10.1016/j.amc.2015.06.059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315008401
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.06.059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Halkos, George & Tsilika, Kyriaki, 2014. "Analyzing and visualizing the synergistic impact mechanisms of climate change related costs," MPRA Paper 55459, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lahmiri, Salim, 2018. "Minute-ahead stock price forecasting based on singular spectrum analysis and support vector regression," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 444-451.
    2. ChaoJiu Da & Fang Li & BingLu Shen & PengCheng Yan & Jian Song & DeShan Ma, 2017. "Detection of a sudden change of the field time series based on the Lorenz system," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-14, January.
    3. Wu, Y.P. & Hu, Y.Y. & Cao, H.X. & Fu, C.F. & Feng, G.L., 2018. "Computing entropy change in synoptic-scale system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 163-168.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. George E. Halkos & Christina Bampatsou, 2019. "Economic growth and environmental degradation: a conditional nonparametric frontier analysis," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(2), pages 325-347, April.
    2. Halkos, George & Tsilika, Kyriaki, 2014. "Perspectives on integrating a computer algebra system into advanced calculus curricula," MPRA Paper 63898, University Library of Munich, Germany.
    3. Halkos, George & Tsilika, Kyriaki, 2021. "Computational aspects of sustainability: Conceptual review and analytical framework," MPRA Paper 109632, University Library of Munich, Germany.
    4. Halkos, George & Bampatsou, Christina, 2016. "Driving forces of different productivity models," MPRA Paper 75398, University Library of Munich, Germany.
    5. Halkos, George & Tsilika, Kyriaki, 2016. "Climate change impacts: Understanding the synergetic interactions using graph computing," MPRA Paper 75037, University Library of Munich, Germany.
    6. George Halkos & Kyriaki Tsilika, 2015. "A Dynamic Interface for Trade Pattern Formation in Multi-regional Multi-sectoral Input-output Modeling," Computational Economics, Springer;Society for Computational Economics, vol. 46(4), pages 671-681, December.
    7. Halkos, George & Bampatsou, Christina, 2016. "Investigating the effect of efficiency and technical changes on productivity," MPRA Paper 76287, University Library of Munich, Germany.
    8. Halkos, George E. & Tsilika, Kyriaki D., 2017. "Climate change effects and their interactions: An analysis aiming at policy implications," Economic Analysis and Policy, Elsevier, vol. 53(C), pages 140-146.
    9. Halkos, George & Tsilika, Kyriaki, 2017. "Computational analysis of source receptor air pollution problems," MPRA Paper 77305, University Library of Munich, Germany.
    10. Halkos, George & Barmpoudaki, Kyriaki & Voulagkas, George & Tsilika, Kyriaki, 2018. "Exploring the EMEP Input-Output model of air pollution," MPRA Paper 90267, University Library of Munich, Germany.
    11. Halkos, George & Bampatsou, Christina, 2017. "Technical efficiency, productivity change and environmental degradation," MPRA Paper 77176, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:268:y:2015:i:c:p:478-488. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.