IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v266y2015icp527-538.html
   My bibliography  Save this article

Stabilization of continuous-time randomly switched systems via the LMI approach

Author

Listed:
  • Wang, Guoliang
  • Zhang, Qingling
  • Yang, Chunyu
  • Su, Chengli

Abstract

This paper is concerned on the stabilization problem of continuous-time switched systems with random switching signal where the dwell time in each subsystem consists of a fixed part and random part. New sufficient conditions for stabilizing controllers including mode-independent case are provided in terms of LMIs, which could be solved directly. Moreover, the obtained results are extended to a more general case that the corresponding operation mode of a controller experiences a disordering phenomenon. Without designing a controller depending on new operation modes (NOMs), a kind of controller only depending on the original operation modes (OOMs) is proposed and satisfies a minimum variance approximation, whose solvable conditions are also with LMI forms. Finally, numerical examples are used to demonstrate the effectiveness of the proposed methods.

Suggested Citation

  • Wang, Guoliang & Zhang, Qingling & Yang, Chunyu & Su, Chengli, 2015. "Stabilization of continuous-time randomly switched systems via the LMI approach," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 527-538.
  • Handle: RePEc:eee:apmaco:v:266:y:2015:i:c:p:527-538
    DOI: 10.1016/j.amc.2015.05.061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315006852
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.05.061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. T. Senthilkumar & P. Balasubramaniam, 2011. "Delay-Dependent Robust Stabilization and H ∞ Control for Nonlinear Stochastic Systems with Markovian Jump Parameters and Interval Time-Varying Delays," Journal of Optimization Theory and Applications, Springer, vol. 151(1), pages 100-120, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Guoliang, 2016. "Mode-independent control of singular Markovian jump systems: A stochastic optimization viewpoint," Applied Mathematics and Computation, Elsevier, vol. 286(C), pages 155-170.
    2. Feng Zhao & Qingling Zhang & Guoliang Wang, 2016. "filtering for piecewise homogeneous Markovian jump nonlinear systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(13), pages 3258-3271, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xie, Jing & Kao, Yonggui & Wang, Changhong & Gao, Cunchen, 2015. "Delay-dependent robust stability of uncertain neutral-type Itoˆ stochastic systems with Markovian jumping parameters," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 576-585.
    2. Zhou, Yaoyao & Chen, Gang, 2021. "Non-fragile H∞ finite-time sliding mode control for stochastic Markovian jump systems with time delay," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    3. Zhao, Lin & Jia, Yingmin, 2015. "Finite-time consensus for second-order stochastic multi-agent systems with nonlinear dynamics," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 278-290.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:266:y:2015:i:c:p:527-538. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.