IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v266y2015icp369-373.html
   My bibliography  Save this article

A remark on one non-autonomous stochastic Gompertz model with delay

Author

Listed:
  • Zhao, Dianli

Abstract

In this paper, we will point out the errors existing in the proof in [1] given by Jovanovic and Krstic (2014) on applications of the comparison theorem which are key steps to the proof of the main result. Then we give the sufficient conditions for persistence in mean and extinction of the considered model with completely new proofs, where we do not ask for the application of the comparison theorem.

Suggested Citation

  • Zhao, Dianli, 2015. "A remark on one non-autonomous stochastic Gompertz model with delay," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 369-373.
  • Handle: RePEc:eee:apmaco:v:266:y:2015:i:c:p:369-373
    DOI: 10.1016/j.amc.2015.05.051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S009630031500675X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.05.051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peng, Shige & Zhu, Xuehong, 2006. "Necessary and sufficient condition for comparison theorem of 1-dimensional stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 116(3), pages 370-380, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Romuald Élie & Emma Hubert & Thibaut Mastrolia & Dylan Possamaï, 2021. "Mean–field moral hazard for optimal energy demand response management," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 399-473, January.
    2. Yu, Jingyi & Liu, Meng, 2017. "Stationary distribution and ergodicity of a stochastic food-chain model with Lévy jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 14-28.
    3. Qi, Kai & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Virus dynamic behavior of a stochastic HIV/AIDS infection model including two kinds of target cell infections and CTL immune responses," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 548-570.
    4. Zhao, Xin & Liu, Lidan & Liu, Meng & Fan, Meng, 2024. "Stochastic dynamics of coral reef system with stage-structure for crown-of-thorns starfish," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    5. Yang, Fen-Fen & Yuan, Chenggui, 2022. "Comparison theorem for neutral stochastic functional differential equations driven by G-Brownian motion," Statistics & Probability Letters, Elsevier, vol. 184(C).
    6. Peng Luo & Falei Wang, 2019. "Viability for Stochastic Differential Equations Driven by G-Brownian Motion," Journal of Theoretical Probability, Springer, vol. 32(1), pages 395-416, March.
    7. Abel Azze & Bernardo D'Auria & Eduardo Garc'ia-Portugu'es, 2022. "Optimal exercise of American options under time-dependent Ornstein-Uhlenbeck processes," Papers 2211.04095, arXiv.org, revised Jun 2024.
    8. Abel Azze & Bernardo D'Auria & Eduardo Garc'ia-Portugu'es, 2022. "Optimal stopping of Gauss-Markov bridges," Papers 2211.05835, arXiv.org, revised Jul 2024.
    9. Sabbar, Yassine & Kiouach, Driss & Rajasekar, S.P. & El-idrissi, Salim El Azami, 2022. "The influence of quadratic Lévy noise on the dynamic of an SIC contagious illness model: New framework, critical comparison and an application to COVID-19 (SARS-CoV-2) case," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    10. Liu, Qun & Chen, Qingmei, 2015. "Dynamics of stochastic delay Lotka–Volterra systems with impulsive toxicant input and Lévy noise in polluted environments," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 52-67.
    11. Azze, A. & D’Auria, B. & García-Portugués, E., 2024. "Optimal stopping of an Ornstein–Uhlenbeck bridge," Stochastic Processes and their Applications, Elsevier, vol. 172(C).
    12. Zhang, Xinhong & Li, Wenxue & Liu, Meng & Wang, Ke, 2015. "Dynamics of a stochastic Holling II one-predator two-prey system with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 571-582.
    13. Romuald Elie & Emma Hubert & Thibaut Mastrolia & Dylan Possamai, 2019. "Mean-field moral hazard for optimal energy demand response management," Papers 1902.10405, arXiv.org, revised Mar 2020.
    14. Frank Bosserhoff & Mitja Stadje, 2019. "Robustness of Delta Hedging in a Jump-Diffusion Model," Papers 1910.08946, arXiv.org, revised Apr 2022.
    15. Liu, Qun & Jiang, Daqing, 2020. "Dynamical behavior of a higher order stochastically perturbed HIV/AIDS model with differential infectivity and amelioration," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    16. Vladislav Krasin & Ivan Smirnov & Alexander Melnikov, 2018. "Approximate option pricing and hedging in the CEV model via path-wise comparison of stochastic processes," Annals of Finance, Springer, vol. 14(2), pages 195-209, May.
    17. Yang, Jiangtao, 2020. "Threshold behavior in a stochastic predator–prey model with general functional response," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    18. Sheng Wang & Linshan Wang & Tengda Wei, 2017. "Well-Posedness and Asymptotic Behaviors for a Predator-Prey System with Lévy Noise," Methodology and Computing in Applied Probability, Springer, vol. 19(3), pages 715-725, September.
    19. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2018. "Stationary distribution and extinction of a stochastic HIV-1 model with Beddington–DeAngelis infection rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 414-426.
    20. Wang, Liang & Jiang, Daqing & Feng, Tao, 2022. "Threshold dynamics in a stochastic chemostat model under regime switching," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:266:y:2015:i:c:p:369-373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.